These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 30274605)

  • 1. Short-Term Synaptic Plasticity as a Mechanism for Sensory Timing.
    Motanis H; Seay MJ; Buonomano DV
    Trends Neurosci; 2018 Oct; 41(10):701-711. PubMed ID: 30274605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity.
    Goudar V; Buonomano DV
    J Neurophysiol; 2015 Jan; 113(2):509-23. PubMed ID: 25339707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding temporal information: A model based on short-term synaptic plasticity.
    Buonomano DV
    J Neurosci; 2000 Feb; 20(3):1129-41. PubMed ID: 10648718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic plasticity can produce and enhance direction selectivity.
    Carver S; Roth E; Cowan NJ; Fortune ES
    PLoS Comput Biol; 2008 Feb; 4(2):e32. PubMed ID: 18282087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of dynamical synapses on firing rate activity: a spiking neural network model.
    Khalil R; Moftah MZ; Moustafa AA
    Eur J Neurosci; 2017 Nov; 46(9):2445-2470. PubMed ID: 28921686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity.
    Jun JK; Jin DZ
    PLoS One; 2007 Aug; 2(8):e723. PubMed ID: 17684568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-tuning of neural circuits through short-term synaptic plasticity.
    Sussillo D; Toyoizumi T; Maass W
    J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity.
    Lee TP; Buonomano DV
    Neural Comput; 2012 Oct; 24(10):2579-603. PubMed ID: 22845822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales.
    Mondal Y; Pena RFO; Rotstein HG
    J Comput Neurosci; 2022 Nov; 50(4):395-429. PubMed ID: 35869381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity.
    Meffin H; Besson J; Burkitt AN; Grayden DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041911. PubMed ID: 16711840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons.
    Bayati M; Valizadeh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011925. PubMed ID: 23005470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-Dependent Short-Term Synaptic Plasticity Between Excitatory Neurons in the C2 Barrel Column of Mouse Primary Somatosensory Cortex.
    Lefort S; Petersen CCH
    Cereb Cortex; 2017 Jul; 27(7):3869-3878. PubMed ID: 28444185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike timing dependent synaptic plasticity in biological systems.
    Roberts PD; Bell CC
    Biol Cybern; 2002 Dec; 87(5-6):392-403. PubMed ID: 12461629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity.
    Rumsey CC; Abbott LF
    J Neurophysiol; 2004 May; 91(5):2273-80. PubMed ID: 14681332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments.
    Goel A; Buonomano DV
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1637):20120460. PubMed ID: 24446494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction to spiking neural networks: Information processing, learning and applications.
    Ponulak F; Kasinski A
    Acta Neurobiol Exp (Wars); 2011; 71(4):409-33. PubMed ID: 22237491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-cell-specific Short-term Plasticity Reduces the Excitatory Drive onto CA1 Interneurons Relative to Pyramidal Cells During Physiologically-derived Spike Trains.
    Sun HY; Li Q; Bartley AF; Dobrunz LE
    Neuroscience; 2018 Sep; 388():430-447. PubMed ID: 30099117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.