BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30274827)

  • 21. The ABCG2 gene Q141K polymorphism contributes to an increased risk of gout: a meta-analysis of 2185 cases.
    Qiu Y; Liu H; Qing Y; Yang M; Tan X; Zhao M; Lin M; Zhou J
    Mod Rheumatol; 2014 Sep; 24(5):829-34. PubMed ID: 24499401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of diuretic use and ABCG2 genotype on the predictive performance of a published allopurinol dosing tool.
    Wright DFB; Dalbeth N; Phipps-Green AJ; Merriman TR; Barclay ML; Drake J; Tan P; Horne A; Stamp LK
    Br J Clin Pharmacol; 2018 May; 84(5):937-943. PubMed ID: 29341237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanism of an adverse drug-drug interaction of allopurinol and furosemide in gout treatment.
    Knake C; Stamp L; Bahn A
    Biochem Biophys Res Commun; 2014 Sep; 452(1):157-62. PubMed ID: 25152400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ABCG2 as a therapeutic target candidate for gout.
    Fujita K; Ichida K
    Expert Opin Ther Targets; 2018 Feb; 22(2):123-129. PubMed ID: 29264928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxipurinol: alloxanthine, Oxyprim, oxypurinol.
    Drugs R D; 2004; 5(3):171-5. PubMed ID: 15139781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Meta-analysis on relationship between single nucleotide polymorphism of rs2231142 in ABCG2 gene and gout in East Asian population].
    Wu L; He Y; Zhang D
    Zhonghua Liu Xing Bing Xue Za Zhi; 2015 Nov; 36(11):1291-6. PubMed ID: 26850254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Higher therapeutic plasma oxypurinol concentrations might be required for gouty patients with chronic kidney disease.
    Panomvana D; Sripradit S; Angthararak S
    J Clin Rheumatol; 2008 Feb; 14(1):6-11. PubMed ID: 18431090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of ABCG2 dysfunction as a major factor contributing to gout.
    Matsuo H; Takada T; Ichida K; Nakamura T; Nakayama A; Takada Y; Okada C; Sakurai Y; Hosoya T; Kanai Y; Suzuki H; Shinomiya N
    Nucleosides Nucleotides Nucleic Acids; 2011 Dec; 30(12):1098-104. PubMed ID: 22132963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel mouse model of hyperuricemia expressing a human functional ABCG2 variant.
    Köttgen A; Köttgen M
    Kidney Int; 2021 Jan; 99(1):12-14. PubMed ID: 33390224
    [No Abstract]   [Full Text] [Related]  

  • 30. Potential role of the ABCG2-Q141K polymorphism in type 2 diabetes.
    Szabó E; Kulin A; Mózner O; Korányi L; Literáti-Nagy B; Vitai M; Cserepes J; Sarkadi B; Várady G
    PLoS One; 2021; 16(12):e0260957. PubMed ID: 34855903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout.
    Petru L; Pavelcova K; Sebesta I; Stiburkova B
    Clin Chim Acta; 2016 Sep; 460():46-9. PubMed ID: 27288985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Usefulness of combination treatment using allopurinol and benzbromarone for gout and hyperuricemia accompanying renal dysfunction: kinetic analysis of oxypurinol].
    Ohno I; Okabe H; Yamaguchi Y; Saikawa H; Uetake D; Hikita M; Gomi H; Ichida K; Hosoya T
    Nihon Jinzo Gakkai Shi; 2008; 50(4):506-12. PubMed ID: 18546882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ABCG2/BCRP dysfunction as a major cause of gout.
    Matsuo H; Takada T; Ichida K; Nakamura T; Nakayama A; Suzuki H; Hosoya T; Shinomiya N
    Nucleosides Nucleotides Nucleic Acids; 2011 Dec; 30(12):1117-28. PubMed ID: 22132966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein.
    Sarankó H; Tordai H; Telbisz Á; Özvegy-Laczka C; Erdős G; Sarkadi B; Hegedűs T
    Biochem Biophys Res Commun; 2013 Jul; 437(1):140-5. PubMed ID: 23800412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between serum urate and plasma oxypurinol in the management of gout: determination of minimum plasma oxypurinol concentration to achieve a target serum urate level.
    Stamp LK; Barclay ML; O'Donnell JL; Zhang M; Drake J; Frampton C; Chapman PT
    Clin Pharmacol Ther; 2011 Sep; 90(3):392-8. PubMed ID: 21796116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Furosemide increases plasma oxypurinol without lowering serum urate--a complex drug interaction: implications for clinical practice.
    Stamp LK; Barclay ML; O'Donnell JL; Zhang M; Drake J; Frampton C; Chapman PT
    Rheumatology (Oxford); 2012 Sep; 51(9):1670-6. PubMed ID: 22539486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response.
    Wen CC; Yee SW; Liang X; Hoffmann TJ; Kvale MN; Banda Y; Jorgenson E; Schaefer C; Risch N; Giacomini KM
    Clin Pharmacol Ther; 2015 May; 97(5):518-25. PubMed ID: 25676789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response.
    Yun J; Mattsson J; Schnyder K; Fontana S; Largiadèr CR; Pichler WJ; Yerly D
    Clin Exp Allergy; 2013 Nov; 43(11):1246-55. PubMed ID: 24152157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A population pharmacokinetic model to predict oxypurinol exposure in patients on haemodialysis.
    Wright DF; Doogue MP; Barclay ML; Chapman PT; Cross NB; Irvine JH; Stamp LK
    Eur J Clin Pharmacol; 2017 Jan; 73(1):71-78. PubMed ID: 27683090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of urinary oxypurinol by high performance liquid chromatography-tandem mass spectrometry.
    Stocker SL; Franklin ME; Anderson JM; Pillans PI; Williams KM; McLachlan AJ; Day RO; Taylor PJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Sep; 878(25):2363-8. PubMed ID: 20702150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.