BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 30274830)

  • 1. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains.
    Yano Y; Hanashima S; Tsuchikawa H; Yasuda T; Slotte JP; London E; Murata M
    Biophys J; 2020 Aug; 119(3):539-552. PubMed ID: 32710823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra.
    Yasuda T; Matsumori N; Tsuchikawa H; Lönnfors M; Nyholm TK; Slotte JP; Murata M
    Langmuir; 2015 Dec; 31(51):13783-92. PubMed ID: 26639840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosized Phase Segregation of Sphingomyelin and Dihydrosphigomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol.
    Yasuda T; Slotte JP; Murata M
    Langmuir; 2018 Nov; 34(44):13426-13437. PubMed ID: 30350701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Glucosylation of cholesterol reduces sterol-sphingomyelin interactions.
    Hanashima S; Fukuda N; Malabed R; Murata M; Kinoshita M; Greimel P; Hirabayashi Y
    Biochim Biophys Acta Biomembr; 2021 Feb; 1863(2):183496. PubMed ID: 33130096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol-Induced Conformational Change in the Sphingomyelin Headgroup.
    Hanashima S; Murakami K; Yura M; Yano Y; Umegawa Y; Tsuchikawa H; Matsumori N; Seo S; Shinoda W; Murata M
    Biophys J; 2019 Jul; 117(2):307-318. PubMed ID: 31303249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes.
    Samsonov AV; Mihalyov I; Cohen FS
    Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miscibility of Sphingomyelins and Phosphatidylcholines in Unsaturated Phosphatidylcholine Bilayers.
    Kullberg A; Ekholm OO; Slotte JP
    Biophys J; 2015 Nov; 109(9):1907-16. PubMed ID: 26536267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
    Heerklotz H; Szadkowska H; Anderson T; Seelig J
    J Mol Biol; 2003 Jun; 329(4):793-9. PubMed ID: 12787678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.
    Quinn PJ
    Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a 2-hydroxylated fatty acid on cholesterol-rich membrane domains.
    Prades J; Funari SS; Gomez-Florit M; Vögler O; Barceló F
    Mol Membr Biol; 2012 Dec; 29(8):333-43. PubMed ID: 22830943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives.
    Filipe HAL; Sousa C; Marquês JT; Vila-Viçosa D; de Granada-Flor A; Viana AS; Santos MSCS; Machuqueiro M; de Almeida RFM
    Free Radic Biol Med; 2018 Feb; 115():232-245. PubMed ID: 29221989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-Dependent Segmental Melting of the Sphingomyelin Alkyl Chain in Lipid Bilayers.
    Tsuchikawa H; Monji M; Umegawa Y; Yasuda T; Slotte JP; Murata M
    Langmuir; 2022 May; 38(18):5515-5524. PubMed ID: 35477243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of lipid raft nanodomains in homogeneous ternary lipid mixture of POPC/DPSM/cholesterol: Theoretical insights.
    Ho TH; Nguyen TT; Huynh LK
    Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184027. PubMed ID: 35995208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.