These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 30274830)
1. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830 [TBL] [Abstract][Full Text] [Related]
2. Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains. Yano Y; Hanashima S; Tsuchikawa H; Yasuda T; Slotte JP; London E; Murata M Biophys J; 2020 Aug; 119(3):539-552. PubMed ID: 32710823 [TBL] [Abstract][Full Text] [Related]
3. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra. Yasuda T; Matsumori N; Tsuchikawa H; Lönnfors M; Nyholm TK; Slotte JP; Murata M Langmuir; 2015 Dec; 31(51):13783-92. PubMed ID: 26639840 [TBL] [Abstract][Full Text] [Related]
4. Nanosized Phase Segregation of Sphingomyelin and Dihydrosphigomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol. Yasuda T; Slotte JP; Murata M Langmuir; 2018 Nov; 34(44):13426-13437. PubMed ID: 30350701 [TBL] [Abstract][Full Text] [Related]
5. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Pathak P; London E Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740 [TBL] [Abstract][Full Text] [Related]
6. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE; Smith DA; Hooper NM Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480 [TBL] [Abstract][Full Text] [Related]
7. β-Glucosylation of cholesterol reduces sterol-sphingomyelin interactions. Hanashima S; Fukuda N; Malabed R; Murata M; Kinoshita M; Greimel P; Hirabayashi Y Biochim Biophys Acta Biomembr; 2021 Feb; 1863(2):183496. PubMed ID: 33130096 [TBL] [Abstract][Full Text] [Related]
8. Cholesterol-Induced Conformational Change in the Sphingomyelin Headgroup. Hanashima S; Murakami K; Yura M; Yano Y; Umegawa Y; Tsuchikawa H; Matsumori N; Seo S; Shinoda W; Murata M Biophys J; 2019 Jul; 117(2):307-318. PubMed ID: 31303249 [TBL] [Abstract][Full Text] [Related]
9. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1. Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409 [TBL] [Abstract][Full Text] [Related]
10. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Samsonov AV; Mihalyov I; Cohen FS Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362 [TBL] [Abstract][Full Text] [Related]
11. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM; Tamm LK Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412 [TBL] [Abstract][Full Text] [Related]
12. Miscibility of Sphingomyelins and Phosphatidylcholines in Unsaturated Phosphatidylcholine Bilayers. Kullberg A; Ekholm OO; Slotte JP Biophys J; 2015 Nov; 109(9):1907-16. PubMed ID: 26536267 [TBL] [Abstract][Full Text] [Related]
13. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Barenholz Y Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621 [TBL] [Abstract][Full Text] [Related]
14. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. Heerklotz H; Szadkowska H; Anderson T; Seelig J J Mol Biol; 2003 Jun; 329(4):793-9. PubMed ID: 12787678 [TBL] [Abstract][Full Text] [Related]
15. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. Quinn PJ Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113 [TBL] [Abstract][Full Text] [Related]
16. Effect of a 2-hydroxylated fatty acid on cholesterol-rich membrane domains. Prades J; Funari SS; Gomez-Florit M; Vögler O; Barceló F Mol Membr Biol; 2012 Dec; 29(8):333-43. PubMed ID: 22830943 [TBL] [Abstract][Full Text] [Related]
17. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Filipe HAL; Sousa C; Marquês JT; Vila-Viçosa D; de Granada-Flor A; Viana AS; Santos MSCS; Machuqueiro M; de Almeida RFM Free Radic Biol Med; 2018 Feb; 115():232-245. PubMed ID: 29221989 [TBL] [Abstract][Full Text] [Related]
18. Depth-Dependent Segmental Melting of the Sphingomyelin Alkyl Chain in Lipid Bilayers. Tsuchikawa H; Monji M; Umegawa Y; Yasuda T; Slotte JP; Murata M Langmuir; 2022 May; 38(18):5515-5524. PubMed ID: 35477243 [TBL] [Abstract][Full Text] [Related]
19. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Yuan C; Furlong J; Burgos P; Johnston LJ Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241 [TBL] [Abstract][Full Text] [Related]
20. Formation of lipid raft nanodomains in homogeneous ternary lipid mixture of POPC/DPSM/cholesterol: Theoretical insights. Ho TH; Nguyen TT; Huynh LK Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184027. PubMed ID: 35995208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]