These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 30275284)

  • 1. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs.
    Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M
    Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach.
    Wang Y; Shi D; Tan Z; Niu Y; Jiang Y; Xiong R; Peng G; He M
    Front Med (Lausanne); 2021; 8():740987. PubMed ID: 34901058
    [No Abstract]   [Full Text] [Related]  

  • 4. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System.
    van der Heijden AA; Abramoff MD; Verbraak F; van Hecke MV; Liem A; Nijpels G
    Acta Ophthalmol; 2018 Feb; 96(1):63-68. PubMed ID: 29178249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
    Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY
    JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.
    Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N
    Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.
    Rajalakshmi R; Subashini R; Anjana RM; Mohan V
    Eye (Lond); 2018 Jun; 32(6):1138-1144. PubMed ID: 29520050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software.
    Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q
    Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471
    [No Abstract]   [Full Text] [Related]  

  • 13. Screening for Diabetic Retinopathy Using a Portable, Noncontact, Nonmydriatic Handheld Retinal Camera.
    Zhang W; Nicholas P; Schuman SG; Allingham MJ; Faridi A; Suthar T; Cousins SW; Prakalapakorn SG
    J Diabetes Sci Technol; 2017 Jan; 11(1):128-134. PubMed ID: 27402242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy.
    Sosale B; Sosale AR; Murthy H; Sengupta S; Naveenam M
    Indian J Ophthalmol; 2020 Feb; 68(2):391-395. PubMed ID: 31957735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.
    Abràmoff MD; Lou Y; Erginay A; Clarida W; Amelon R; Folk JC; Niemeijer M
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5200-5206. PubMed ID: 27701631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis.
    Islam MM; Yang HC; Poly TN; Jian WS; Jack Li YC
    Comput Methods Programs Biomed; 2020 Jul; 191():105320. PubMed ID: 32088490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated analysis of retinal images for detection of referable diabetic retinopathy.
    Abràmoff MD; Folk JC; Han DP; Walker JD; Williams DF; Russell SR; Massin P; Cochener B; Gain P; Tang L; Lamard M; Moga DC; Quellec G; Niemeijer M
    JAMA Ophthalmol; 2013 Mar; 131(3):351-7. PubMed ID: 23494039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative evaluation of digital imaging, retinal photography and optometrist examination in screening for diabetic retinopathy.
    Olson JA; Strachan FM; Hipwell JH; Goatman KA; McHardy KC; Forrester JV; Sharp PF
    Diabet Med; 2003 Jul; 20(7):528-34. PubMed ID: 12823232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy.
    Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H
    Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.