BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30275366)

  • 1. Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Wen S; Zhang H; Zhang Y
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30275366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery.
    Huang H; Lan Y; Deng J; Yang A; Deng X; Zhang L; Wen S
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29966392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
    Peña JM; Torres-Sánchez J; de Castro AI; Kelly M; López-Granados F
    PLoS One; 2013; 8(10):e77151. PubMed ID: 24146963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards reducing chemical usage for weed control in agriculture using UAS imagery analysis and computer vision techniques.
    Sapkota R; Stenger J; Ostlie M; Flores P
    Sci Rep; 2023 Apr; 13(1):6548. PubMed ID: 37085558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
    Borra-Serrano I; Peña JM; Torres-Sánchez J; Mesas-Carrascosa FJ; López-Granados F
    Sensors (Basel); 2015 Aug; 15(8):19688-708. PubMed ID: 26274960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.
    Peña JM; Torres-Sánchez J; Serrano-Pérez A; de Castro AI; López-Granados F
    Sensors (Basel); 2015 Mar; 15(3):5609-26. PubMed ID: 25756867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
    Xia F; Quan L; Lou Z; Sun D; Li H; Lv X
    Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery.
    Lobo Torres D; Queiroz Feitosa R; Nigri Happ P; Elena Cué La Rosa L; Marcato Junior J; Martins J; Olã Bressan P; Gonçalves WN; Liesenberg V
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31968589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.
    Ma X; Deng X; Qi L; Jiang Y; Li H; Wang Y; Xing X
    PLoS One; 2019; 14(4):e0215676. PubMed ID: 30998770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the ability of unmanned aerial systems and machine learning to map weeds at subfield scales: a test with the weed Alopecurus myosuroides (Huds).
    Lambert JP; Childs DZ; Freckleton RP
    Pest Manag Sci; 2019 Aug; 75(8):2283-2294. PubMed ID: 30972939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on weed identification method in rice fields based on UAV remote sensing.
    Yu F; Jin Z; Guo S; Guo Z; Zhang H; Xu T; Chen C
    Front Plant Sci; 2022; 13():1037760. PubMed ID: 36438154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Vehicle-Detection Method in Bird-View Unmanned-Aerial-Vehicle Imagery.
    Han S; Yoo J; Kwon S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery.
    Tamouridou AA; Alexandridis TK; Pantazi XE; Lagopodi AL; Kashefi J; Kasampalis D; Kontouris G; Moshou D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29019957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms.
    Hassanein M; Lari Z; El-Sheimy N
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Real-Time Weed Mapping and Precision Herbicide Spraying System for Row Crops.
    Xu Y; Gao Z; Khot L; Meng X; Zhang Q
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.