BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30275366)

  • 21. Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements.
    Xu B; Meng R; Chen G; Liang L; Lv Z; Zhou L; Sun R; Zhao F; Yang W
    Pest Manag Sci; 2023 Jul; 79(7):2591-2602. PubMed ID: 36883563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CoFly-WeedDB: A UAV image dataset for weed detection and species identification.
    Krestenitis M; Raptis EK; Kapoutsis AC; Ioannidis K; Kosmatopoulos EB; Vrochidis S; Kompatsiaris I
    Data Brief; 2022 Dec; 45():108575. PubMed ID: 36131952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unmanned Aerial System-Based Weed Mapping in Sod Production Using a Convolutional Neural Network.
    Zhang J; Maleski J; Jespersen D; Waltz FC; Rains G; Schwartz B
    Front Plant Sci; 2021; 12():702626. PubMed ID: 34899768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Weed detection in soybean fields using improved YOLOv7 and evaluating herbicide reduction efficacy.
    Li J; Zhang W; Zhou H; Yu C; Li Q
    Front Plant Sci; 2023; 14():1284338. PubMed ID: 38273952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of Ecballium elaterium in hedgerow olive orchards using a low-cost uncrewed aerial vehicle and open-source algorithms.
    Torres-Sánchez J; Mesas-Carrascosa FJ; Pérez-Porras F; López-Granados F
    Pest Manag Sci; 2023 Feb; 79(2):645-654. PubMed ID: 36223137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with
    Lambert JPT; Hicks HL; Childs DZ; Freckleton RP
    Weed Res; 2018 Feb; 58(1):35-45. PubMed ID: 29527066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of convolutional neural networks for herbicide susceptibility-based weed detection in turf.
    Jin X; Liu T; McCullough PE; Chen Y; Yu J
    Front Plant Sci; 2023; 14():1096802. PubMed ID: 36818827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery.
    Nong C; Fan X; Wang J
    Front Plant Sci; 2022; 13():927368. PubMed ID: 35845704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops.
    Laursen MS; Jørgensen RN; Midtiby HS; Jensen K; Christiansen MP; Giselsson TM; Mortensen AK; Jensen PK
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
    Paull L; Thibault C; Nagaty A; Seto M; Li H
    IEEE Trans Cybern; 2014 Sep; 44(9):1605-18. PubMed ID: 25137689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weed Detection from Unmanned Aerial Vehicle Imagery Using Deep Learning-A Comparison between High-End and Low-Cost Multispectral Sensors.
    Seiche AT; Wittstruck L; Jarmer T
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel fine-scale aerial mapping approach quantifies grassland weed cover dynamics and response to management.
    Malmstrom CM; Butterfield HS; Planck L; Long CW; Eviner VT
    PLoS One; 2017; 12(10):e0181665. PubMed ID: 29016604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model.
    Genze N; Wirth M; Schreiner C; Ajekwe R; Grieb M; Grimm DG
    Plant Methods; 2023 Aug; 19(1):87. PubMed ID: 37608384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novelty Detection Classifiers in Weed Mapping: Silybum marianum Detection on UAV Multispectral Images.
    Alexandridis TK; Tamouridou AA; Pantazi XE; Lagopodi AL; Kashefi J; Ovakoglou G; Polychronos V; Moshou D
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28862663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.
    Casado MR; Gonzalez RB; Kriechbaumer T; Veal A
    Sensors (Basel); 2015 Nov; 15(11):27969-89. PubMed ID: 26556355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating economic thresholds for site-specific weed control using manual weed counts and sensor technology: an example based on three winter wheat trials.
    Keller M; Gutjahr C; Möhring J; Weis M; Sökefeld M; Gerhards R
    Pest Manag Sci; 2014 Feb; 70(2):200-11. PubMed ID: 23553904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Saliency Detection and Deep Learning-Based Wildfire Identification in UAV Imagery.
    Zhao Y; Ma J; Li X; Zhang J
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citrus Tree Segmentation from UAV Images Based on Monocular Machine Vision in a Natural Orchard Environment.
    Chen Y; Hou C; Tang Y; Zhuang J; Lin J; He Y; Guo Q; Zhong Z; Lei H; Luo S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31888248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fully Convolutional Networks for Semantic Segmentation.
    Shelhamer E; Long J; Darrell T
    IEEE Trans Pattern Anal Mach Intell; 2017 Apr; 39(4):640-651. PubMed ID: 27244717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.