BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30275447)

  • 21. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration.
    Fan XB; Yu S; Wang X; Li ZJ; Zhan F; Li JX; Gao YJ; Xia AD; Tao Y; Li XB; Zhang LP; Tung CH; Wu LZ
    Adv Mater; 2019 Feb; 31(7):e1804872. PubMed ID: 30570781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.
    Wu K; Song N; Liu Z; Zhu H; Rodríguez-Córdoba W; Lian T
    J Phys Chem A; 2013 Aug; 117(32):7561-70. PubMed ID: 23639000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries.
    Ayupova D; Dobhal G; Laufersky G; Nann T; Goreham RV
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.
    Zhao C; Bai Z; Liu X; Zhang Y; Zou B; Zhong H
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17623-9. PubMed ID: 26212187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution.
    Kuang PY; Zheng PX; Liu ZQ; Lei JL; Wu H; Li N; Ma TY
    Small; 2016 Dec; 12(48):6735-6744. PubMed ID: 27709776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability.
    Tamang S; Beaune G; Texier I; Reiss P
    ACS Nano; 2011 Dec; 5(12):9392-402. PubMed ID: 22035355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications.
    Ramasamy P; Kim B; Lee MS; Lee JS
    Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.
    Byun HJ; Lee JC; Yang H
    J Colloid Interface Sci; 2011 Mar; 355(1):35-41. PubMed ID: 21194707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications.
    Ellis MA; Grandinetti G; Fichter KM
    J Vis Exp; 2016 Feb; (108):e53684. PubMed ID: 26891282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Stabilized InP/GaP/ZnS Quantum Dots with Mg Ions for WLED Application.
    Park JP; Kim SW
    J Nanosci Nanotechnol; 2016 May; 16(5):5312-5. PubMed ID: 27483923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered Environment-Friendly Colloidal Core/Shell Quantum Dots for High-Efficiency Solar-Driven Photoelectrochemical Hydrogen Evolution.
    Long Z; Tong X; Wang R; Channa AI; Li X; You Y; Xia L; Cai M; Zhao H; Wang ZM
    ChemSusChem; 2022 May; 15(10):e202200346. PubMed ID: 35319829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of β-mercaptoethanol on CdSe/ZnS and InP/ZnS quantum dots.
    Georgin M; Carlini L; Cooper D; Bradforth SE; Nadeau JL
    Phys Chem Chem Phys; 2013 Jul; 15(25):10418-28. PubMed ID: 23681155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.
    Grigel V; Dupont D; De Nolf K; Hens Z; Tessier MD
    J Am Chem Soc; 2016 Oct; 138(41):13485-13488. PubMed ID: 27701864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear optical properties of InP/ZnS core-shell quantum dots.
    Wang C; Niu R; Zhou Z; Wu W; Chai Z; Song Y; Kong D
    Nanotechnology; 2020 Mar; 31(13):135001. PubMed ID: 31810071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZnO/ZnS heterostructured nanorod arrays and their efficient photocatalytic hydrogen evolution.
    Bao D; Gao P; Zhu X; Sun S; Wang Y; Li X; Chen Y; Zhou H; Wang Y; Yang P
    Chemistry; 2015 Sep; 21(36):12728-34. PubMed ID: 26189562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic Stabilized InP Colloidal Quantum Dots with High Photoluminescence Efficiency.
    Mnoyan AN; Kirakosyan AG; Kim H; Jang HS; Jeon DY
    Langmuir; 2015 Jun; 31(25):7117-21. PubMed ID: 26043065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine asa poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy.
    Gupta VK; Fakhri A; Azad M; Agarwal S
    J Colloid Interface Sci; 2018 Jan; 510():95-102. PubMed ID: 28942069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of Broad Emission Spectra in InP Quantum Dots: Contributions from Structural and Electronic Disorder.
    Janke EM; Williams NE; She C; Zherebetskyy D; Hudson MH; Wang L; Gosztola DJ; Schaller RD; Lee B; Sun C; Engel GS; Talapin DV
    J Am Chem Soc; 2018 Nov; 140(46):15791-15803. PubMed ID: 30285448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.