These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30275501)

  • 1. Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction.
    Sarma B; Sarma AK
    Sci Rep; 2018 Oct; 8(1):14583. PubMed ID: 30275501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators.
    Yin TS; Jin GR; Chen A
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Capacitively Distinct Mechanical Resonators for Room-Temperature Phonon-Cavity Electromechanics.
    Pokharel A; Xu H; Venkatachalam S; Collin E; Zhou X
    Nano Lett; 2022 Sep; 22(18):7351-7357. PubMed ID: 36083792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable phonon blockade in quadratically coupled optomechanical systems.
    Shi HQ; Zhou XT; Xu XW; Liu NH
    Sci Rep; 2018 Feb; 8(1):2212. PubMed ID: 29396514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent phonon dynamics in spatially separated graphene mechanical resonators.
    Zhang ZZ; Song XX; Luo G; Su ZJ; Wang KL; Cao G; Li HO; Xiao M; Guo GC; Tian L; Deng GW; Guo GP
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5582-5587. PubMed ID: 32123110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical noise-resistant nonreciprocal phonon blockade in a spinning optomechanical resonator.
    Yuan N; He S; Li SY; Wang N; Zhu AD
    Opt Express; 2023 Jun; 31(12):20160-20173. PubMed ID: 37381416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon blockade in a nanomechanical resonator quadratically coupled to a two-level system.
    Shi HQ; Xu XW; Liu NH
    Sci Rep; 2019 Jun; 9(1):8754. PubMed ID: 31217498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems.
    Wang M; Yin TS; Sun ZY; Cheng HG; Zhan BF; Zheng LL
    Opt Express; 2022 Mar; 30(7):10251-10268. PubMed ID: 35472997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Enhancement of Unconventional Photon Blockade in a Dimer Chain.
    Wang Y; Verstraelen W; Zhang B; Liew TCH; Chong YD
    Phys Rev Lett; 2021 Dec; 127(24):240402. PubMed ID: 34951803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid photon-phonon blockade.
    Abo S; Chimczak G; Kowalewska-Kudłaszyk A; Peřina J; Chhajlany R; Miranowicz A
    Sci Rep; 2022 Oct; 12(1):17655. PubMed ID: 36271120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-path photon-phonon converter in optomechanical system at single-quantum level.
    Chen TY; Zhang WZ; Fang RZ; Hang CZ; Zhou L
    Opt Express; 2017 May; 25(10):10779-10790. PubMed ID: 28788767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon counting and intensity interferometry of a nanomechanical resonator.
    Cohen JD; Meenehan SM; MacCabe GS; Gröblacher S; Safavi-Naeini AH; Marsili F; Shaw MD; Painter O
    Nature; 2015 Apr; 520(7548):522-5. PubMed ID: 25903632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Tian L; Guo GP
    Nat Commun; 2018 Jan; 9(1):383. PubMed ID: 29374169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonreciprocal control and cooling of phonon modes in an optomechanical system.
    Xu H; Jiang L; Clerk AA; Harris JGE
    Nature; 2019 Apr; 568(7750):65-69. PubMed ID: 30944494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional photon blockade in a non-Hermitian indirectly coupled resonator system.
    Wang K; Wang H; Gao YP; Yang D; Jiao RZ; Wang C
    Opt Express; 2023 Jan; 31(2):1629-1640. PubMed ID: 36785194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreciprocal photon blockade in a spinning optomechanical system with nonreciprocal coupling.
    Liu YM; Cheng J; Wang HF; Yi X
    Opt Express; 2023 Apr; 31(8):12847-12864. PubMed ID: 37157436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Photon Cooling in Microwave Magnetomechanics.
    Zoepfl D; Juan ML; Schneider CMF; Kirchmair G
    Phys Rev Lett; 2020 Jul; 125(2):023601. PubMed ID: 32701311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable microwave-optical entanglement and conversion in multimode electro-opto-mechanics.
    Wei T; Wu D; Miao Q; Yang C; Luo J
    Opt Express; 2022 Mar; 30(6):10135-10151. PubMed ID: 35299424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.