These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 30275529)
1. CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Li Q; Li Y; Yang S; Huang S; Yan M; Ding Y; Tang W; Lou X; Yin Q; Sun Z; Lu L; Shi H; Wang H; Chen Y; Li J Nat Cell Biol; 2018 Nov; 20(11):1315-1325. PubMed ID: 30275529 [TBL] [Abstract][Full Text] [Related]
2. Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. Mall EM; Lecanda A; Drexler HCA; Raz E; Schöler HR; Schlatt S PLoS One; 2021; 16(10):e0258427. PubMed ID: 34653201 [TBL] [Abstract][Full Text] [Related]
3. [CRISPR-Cas9, germinal cells and human embryo]. Jouannet P Biol Aujourdhui; 2017; 211(3):207-213. PubMed ID: 29412130 [TBL] [Abstract][Full Text] [Related]
4. The RNA-binding protein DND1 acts sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Ruthig VA; Friedersdorf MB; Garness JA; Munger SC; Bunce C; Keene JD; Capel B Development; 2019 Jul; 146(19):. PubMed ID: 31253634 [TBL] [Abstract][Full Text] [Related]
5. A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells†. Ruthig VA; Yokonishi T; Friedersdorf MB; Batchvarova S; Hardy J; Garness JA; Keene JD; Capel B Biol Reprod; 2021 Apr; 104(4):861-874. PubMed ID: 33394034 [TBL] [Abstract][Full Text] [Related]
6. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Chadwick AC; Wang X; Musunuru K Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Zhang H; Pan H; Zhou C; Wei Y; Ying W; Li S; Wang G; Li C; Ren Y; Li G; Ding X; Sun Y; Li GL; Song L; Li Y; Yang H; Liu Z Development; 2018 Oct; 145(20):. PubMed ID: 30275281 [No Abstract] [Full Text] [Related]
8. High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Idoko-Akoh A; Taylor L; Sang HM; McGrew MJ Sci Rep; 2018 Oct; 8(1):15126. PubMed ID: 30310080 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous targeting of linked loci in mouse embryos using base editing. Lee HK; Willi M; Smith HE; Miller SM; Liu DR; Liu C; Hennighausen L Sci Rep; 2019 Feb; 9(1):1662. PubMed ID: 30733567 [TBL] [Abstract][Full Text] [Related]
10. Genome Editing Mediated by Primordial Germ Cell in Chicken. Han JY; Lee HJ Methods Mol Biol; 2017; 1630():153-163. PubMed ID: 28643257 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances and Future Perspectives of In Vivo Targeted Delivery of Genome-Editing Reagents to Germ Cells, Embryos, and Fetuses in Mice. Sato M; Takabayashi S; Akasaka E; Nakamura S Cells; 2020 Mar; 9(4):. PubMed ID: 32225003 [TBL] [Abstract][Full Text] [Related]
12. CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. Gruzdev A; Scott GJ; Hagler TB; Ray MK Methods Mol Biol; 2019; 1960():1-21. PubMed ID: 30798517 [TBL] [Abstract][Full Text] [Related]
13. Precise and efficient scarless genome editing in stem cells using CORRECT. Kwart D; Paquet D; Teo S; Tessier-Lavigne M Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837 [TBL] [Abstract][Full Text] [Related]
14. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Harmsen T; Klaasen S; van de Vrugt H; Te Riele H Nucleic Acids Res; 2018 Apr; 46(6):2945-2955. PubMed ID: 29447381 [TBL] [Abstract][Full Text] [Related]
15. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Zuo E; Sun Y; Wei W; Yuan T; Ying W; Sun H; Yuan L; Steinmetz LM; Li Y; Yang H Science; 2019 Apr; 364(6437):289-292. PubMed ID: 30819928 [TBL] [Abstract][Full Text] [Related]
16. Progress in the application of CRISPR: From gene to base editing. Wu W; Yang Y; Lei H Med Res Rev; 2019 Mar; 39(2):665-683. PubMed ID: 30171624 [TBL] [Abstract][Full Text] [Related]
17. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Oishi I; Yoshii K; Miyahara D; Kagami H; Tagami T Sci Rep; 2016 Apr; 6():23980. PubMed ID: 27050479 [TBL] [Abstract][Full Text] [Related]
18. Highly efficient RNA-guided base editing in mouse embryos. Kim K; Ryu SM; Kim ST; Baek G; Kim D; Lim K; Chung E; Kim S; Kim JS Nat Biotechnol; 2017 May; 35(5):435-437. PubMed ID: 28244995 [TBL] [Abstract][Full Text] [Related]
19. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Sasaguri H; Nagata K; Sekiguchi M; Fujioka R; Matsuba Y; Hashimoto S; Sato K; Kurup D; Yokota T; Saido TC Nat Commun; 2018 Jul; 9(1):2892. PubMed ID: 30042426 [TBL] [Abstract][Full Text] [Related]
20. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. Li L; Song L; Liu X; Yang X; Li X; He T; Wang N; Yang S; Yu C; Yin T; Wen Y; He Z; Wei X; Su W; Wu Q; Yao S; Gong C; Wei Y ACS Nano; 2017 Jan; 11(1):95-111. PubMed ID: 28114767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]