BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30276394)

  • 1. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins.
    Brown J; Behnam R; Coddington L; Tervo DGR; Martin K; Proskurin M; Kuleshova E; Park J; Phillips J; Bergs ACF; Gottschalk A; Dudman JT; Karpova AY
    Cell; 2018 Nov; 175(4):1131-1140.e11. PubMed ID: 30343901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in cellular optogenetics for photomedicine.
    Chen B; Cui M; Wang Y; Shi P; Wang H; Wang F
    Adv Drug Deliv Rev; 2022 Sep; 188():114457. PubMed ID: 35843507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.
    Schmid F; Wachsmuth L; Schwalm M; Prouvot PH; Jubal ER; Fois C; Pramanik G; Zimmer C; Faber C; Stroh A
    J Cereb Blood Flow Metab; 2016 Nov; 36(11):1885-1900. PubMed ID: 26661247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Studies of Mitochondria.
    Chen K; Ernst P; Liu XM; Zhou L
    Methods Mol Biol; 2022; 2501():311-324. PubMed ID: 35857235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetics and Optical Tools in Automated Patch Clamping.
    Boddum K; Skafte-Pedersen P; Rolland JF; Wilson S
    Methods Mol Biol; 2021; 2188():311-330. PubMed ID: 33119859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction.
    Park JH; Hong JK; Jang JY; An J; Lee KS; Kang TM; Shin HJ; Suh JF
    Sci Rep; 2017 Jan; 7():40872. PubMed ID: 28098199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Optomotor Assay for Assessing the Efficacy of Optogenetic Tools for Vision Restoration.
    Lu Q; Ganjawala TH; Hattar S; Abrams GW; Pan ZH
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1288-1294. PubMed ID: 29625451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling ChR2-driven stochastic Ca2+ dynamics in astrocytes: A call for new interventional paradigms.
    Moshkforoush A; Balachandar L; Moncion C; Montejo KA; Riera J
    PLoS Comput Biol; 2021 Feb; 17(2):e1008648. PubMed ID: 33566841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior.
    Wietek J; Rodriguez-Rozada S; Tutas J; Tenedini F; Grimm C; Oertner TG; Soba P; Hegemann P; Wiegert JS
    Sci Rep; 2017 Nov; 7(1):14957. PubMed ID: 29097684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress of Development of Optogenetic Implantable Neural Probes.
    Zhao H
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28800085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved orange and red Ca²± indicators and photophysical considerations for optogenetic applications.
    Wu J; Liu L; Matsuda T; Zhao Y; Rebane A; Drobizhev M; Chang YF; Araki S; Arai Y; March K; Hughes TE; Sagou K; Miyata T; Nagai T; Li WH; Campbell RE
    ACS Chem Neurosci; 2013 Jun; 4(6):963-72. PubMed ID: 23452507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity.
    Kopton RA; Buchmann C; Moss R; Kohl P; Peyronnet R; Schneider-Warme F
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
    Hamada S; Nagase M; Yoshizawa T; Hagiwara A; Isomura Y; Watabe AM; Ohtsuka T
    Commun Biol; 2021 Apr; 4(1):461. PubMed ID: 33846537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.