These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30276399)

  • 21. Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.
    Ren J; Liao Q; Huang H; Li Y; Gao T; Ma X; Schumacher S; Yao J; Bai S; Fu H
    Nano Lett; 2020 Oct; 20(10):7550-7557. PubMed ID: 32986448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr
    Shang Q; Li M; Zhao L; Chen D; Zhang S; Chen S; Gao P; Shen C; Xing J; Xing G; Shen B; Liu X; Zhang Q
    Nano Lett; 2020 Sep; 20(9):6636-6643. PubMed ID: 32786951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lasing from lead halide perovskite semiconductor microcavity system.
    Wang J; Da P; Zhang Z; Luo S; Liao L; Sun Z; Shen X; Wu S; Zheng G; Chen Z
    Nanoscale; 2018 Jun; 10(22):10371-10376. PubMed ID: 29809212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods.
    Rahman MA; Scott JA; Gentle A; Phillips MR; Ton-That C
    Nanotechnology; 2018 Oct; 29(42):425707. PubMed ID: 30074482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-matter interaction and polarization of single ZnO nanowire lasers.
    Han NS; Shim HS; Lee S; Park SM; Choi MY; Song JK
    Phys Chem Chem Phys; 2012 Aug; 14(30):10556-63. PubMed ID: 22751811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wavelength-Tunable Electroluminescent Light Sources from Individual Ga-Doped ZnO Microwires.
    Jiang M; He G; Chen H; Zhang Z; Zheng L; Shan C; Shen D; Fang X
    Small; 2017 May; 13(19):. PubMed ID: 28266808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity.
    Heo J; Jahangir S; Xiao B; Bhattacharya P
    Nano Lett; 2013 Jun; 13(6):2376-80. PubMed ID: 23634649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance.
    Chen Y; Chen Y
    Opt Express; 2011 Apr; 19(9):8728-34. PubMed ID: 21643125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires.
    O'Carroll D; Lieberwirth I; Redmond G
    Nat Nanotechnol; 2007 Mar; 2(3):180-4. PubMed ID: 18654250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrically driven ultraviolet random lasing from an n-MgZnO/i-ZnO/SiO2/p-Si asymmetric double heterojunction.
    Shi ZF; Zhang YT; Xia XC; Zhao W; Wang H; Zhao L; Dong X; Zhang BL; Du GT
    Nanoscale; 2013 Jun; 5(11):5080-5. PubMed ID: 23640662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity.
    Roh J; Park YS; Lim J; Klimov VI
    Nat Commun; 2020 Jan; 11(1):271. PubMed ID: 31937771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically pumped ultraviolet lasing in polygonal hollow microresonators: investigation on optical cavity effect.
    Shi Z; Li Y; Zhang Y; Wu D; Xu T; Zhang B; Liang L; Li X; Du G
    Opt Lett; 2016 Dec; 41(23):5608-5611. PubMed ID: 27906251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers.
    Chun SY; Yoo GY; Jeong S; Park SM; Eo YJ; Kim W; Do YR; Song JK
    Nanoscale; 2019 Aug; 11(30):14186-14193. PubMed ID: 31267116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrically Pumped III-N Microcavity Light Emitters Incorporating an Oxide Confinement Aperture.
    Lai YY; Chang TC; Li YC; Lu TC; Wang SC
    Nanoscale Res Lett; 2017 Dec; 12(1):15. PubMed ID: 28058649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method.
    Park GC; Hwang SM; Lim JH; Joo J
    Nanoscale; 2014; 6(3):1840-7. PubMed ID: 24356989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A GaAs polariton light-emitting diode operating near room temperature.
    Tsintzos SI; Pelekanos NT; Konstantinidis G; Hatzopoulos Z; Savvidis PG
    Nature; 2008 May; 453(7193):372-5. PubMed ID: 18480820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultraviolet electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires.
    Tang X; Li G; Zhou S
    Nano Lett; 2013 Nov; 13(11):5046-50. PubMed ID: 24073683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabry-PĂ©rot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities.
    Mi Y; Liu Z; Shang Q; Niu X; Shi J; Zhang S; Chen J; Du W; Wu Z; Wang R; Qiu X; Hu X; Zhang Q; Wu T; Liu X
    Small; 2018 Mar; 14(9):. PubMed ID: 29320610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pure Metal-Organic Framework Microlasers with Controlled Cavity Shapes.
    Lv Y; Xiong Z; Dong H; Wei C; Yang Y; Ren A; Yao Z; Li Y; Xiang S; Zhang Z; Zhao YS
    Nano Lett; 2020 Mar; 20(3):2020-2025. PubMed ID: 32083875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.