BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30276545)

  • 41. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach.
    Schirmer CM; Elder JB; Roitberg B; Lobel DA
    Neurosurgery; 2013 Oct; 73 Suppl 1():66-73. PubMed ID: 24051886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and Validation of a Mobile Device-based External Ventricular Drain Simulator.
    Morone PJ; Bekelis K; Root BK; Singer RJ
    Oper Neurosurg (Hagerstown); 2017 Oct; 13(5):603-608. PubMed ID: 28922878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills.
    Choudhury N; GĂ©linas-Phaneuf N; Delorme S; Del Maestro R
    World Neurosurg; 2013 Nov; 80(5):e9-19. PubMed ID: 23178917
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simulator based angiography education in neurosurgery: results of a pilot educational program.
    Fargen KM; Siddiqui AH; Veznedaroglu E; Turner RD; Ringer AJ; Mocco J
    J Neurointerv Surg; 2012 Nov; 4(6):438-41. PubMed ID: 22015637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Virtual reality-based simulators for spine surgery: a systematic review.
    Pfandler M; Lazarovici M; Stefan P; Wucherer P; Weigl M
    Spine J; 2017 Sep; 17(9):1352-1363. PubMed ID: 28571789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cognitive versus virtual reality simulation for evaluation of technical skills in neurosurgery.
    Knafo S; Penet N; Gaillard S; Parker F
    Neurosurg Focus; 2021 Aug; 51(2):E9. PubMed ID: 34333478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine learning distinguishes neurosurgical skill levels in a virtual reality tumor resection task.
    Siyar S; Azarnoush H; Rashidi S; Winkler-Schwartz A; Bissonnette V; Ponnudurai N; Del Maestro RF
    Med Biol Eng Comput; 2020 Jun; 58(6):1357-1367. PubMed ID: 32279203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overcoming Barriers in Neurosurgical Education: A Novel Approach to Practical Ventriculostomy Simulation.
    Amini A; Zeller Y; Stein KP; Hartmann K; Wartmann T; Wex C; Mirzaee E; Swiatek VM; Saalfeld S; Haghikia A; Dumitru CA; Sandalcioglu IE; Neyazi B
    Oper Neurosurg (Hagerstown); 2022 Sep; 23(3):225-234. PubMed ID: 35972086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a brain simulator for intracranial targeting: Technical note.
    Carolus A; Hesse M; Rudak B; Weihe S; Brenke C
    J Clin Neurosci; 2019 Jan; 59():378-383. PubMed ID: 30377042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and Implementation of an Inexpensive, Easily Producible, Time Efficient External Ventricular Drain Simulator Using 3-Dimensional Printing and Image Registration.
    Bow H; He L; Raees MA; Pruthi S; Chitale R
    Oper Neurosurg (Hagerstown); 2019 Apr; 16(4):496-502. PubMed ID: 29873765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Virtual reality simulation in neurosurgery: technologies and evolution.
    Chan S; Conti F; Salisbury K; Blevins NH
    Neurosurgery; 2013 Jan; 72 Suppl 1():154-64. PubMed ID: 23254804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Virtual Reality and Simulation in Neurosurgical Training.
    Bernardo A
    World Neurosurg; 2017 Oct; 106():1015-1029. PubMed ID: 28985656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Construct validity of the LapSim: can the LapSim virtual reality simulator distinguish between novices and experts?
    van Dongen KW; Tournoij E; van der Zee DC; Schijven MP; Broeders IA
    Surg Endosc; 2007 Aug; 21(8):1413-7. PubMed ID: 17294307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A virtual reality-based data analysis for optimizing freehand external ventricular drain insertion.
    Yi Z; He B; Deng Z; Liu Y; Huang S; Hong W
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):269-276. PubMed ID: 33331958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills.
    Cagiltay NE; Ozcelik E; Sengul G; Berker M
    Surg Endosc; 2017 Nov; 31(11):4485-4495. PubMed ID: 28389794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Utilizing a multilayer perceptron artificial neural network to assess a virtual reality surgical procedure.
    Alkadri S; Ledwos N; Mirchi N; Reich A; Yilmaz R; Driscoll M; Del Maestro RF
    Comput Biol Med; 2021 Sep; 136():104770. PubMed ID: 34426170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bimanual Psychomotor Performance in Neurosurgical Resident Applicants Assessed Using NeuroTouch, a Virtual Reality Simulator.
    Winkler-Schwartz A; Bajunaid K; Mullah MAS; Marwa I; Alotaibi FE; Fares J; Baggiani M; Azarnoush H; Zharni GA; Christie S; Sabbagh AJ; Werthner P; Del Maestro RF
    J Surg Educ; 2016; 73(6):942-953. PubMed ID: 27395397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Developing a pediatric neurosurgical training model.
    Craven CL; Cooke M; Rangeley C; Alberti SJMM; Murphy M
    J Neurosurg Pediatr; 2018 Mar; 21(3):329-335. PubMed ID: 29271733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing and validating a customized virtual reality-based laparoscopic skills curriculum.
    Panait L; Bell RL; Roberts KE; Duffy AJ
    J Surg Educ; 2008; 65(6):413-7. PubMed ID: 19059171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.