These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30276607)

  • 1. A methyl
    Gopalan AB; Yuwen T; Kay LE; Vallurupalli P
    J Biomol NMR; 2018 Oct; 72(1-2):79-91. PubMed ID: 30276607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the signs of the methyl
    Gopalan AB; Vallurupalli P
    J Biomol NMR; 2018 Mar; 70(3):187-202. PubMed ID: 29564579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methyl-TROSY based
    Tugarinov V; Baber JL; Clore GM
    J Biomol NMR; 2023 Jun; 77(3):83-91. PubMed ID: 37095392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
    Skrynnikov NR; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
    Vallurupalli P; Hansen DF; Lundström P; Kay LE
    J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments.
    Reddy JG; Pratihar S; Ban D; Frischkorn S; Becker S; Griesinger C; Lee D
    J Biomol NMR; 2018 Jan; 70(1):1-9. PubMed ID: 29188417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Diffusion Constants of Invisible Protein Conformers by Triple-Quantum
    Yuwen T; Sekhar A; Baldwin AJ; Vallurupalli P; Kay LE
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16777-16780. PubMed ID: 30370966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting
    Yuwen T; Kay LE
    J Biomol NMR; 2019 Nov; 73(10-11):641-650. PubMed ID: 31646421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for slow motion in proteins by multiple refocusing of heteronuclear nitrogen/proton multiple quantum coherences in NMR.
    Dittmer J; Bodenhausen G
    J Am Chem Soc; 2004 Feb; 126(5):1314-5. PubMed ID: 14759169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes.
    Hansen AL; Lundström P; Velyvis A; Kay LE
    J Am Chem Soc; 2012 Feb; 134(6):3178-89. PubMed ID: 22300166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal relaxation optimized amide
    Yuwen T; Kay LE
    J Biomol NMR; 2017 Apr; 67(4):295-307. PubMed ID: 28357518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multiple-Quantum Spectroscopy.
    Yuwen T; Vallurupalli P; Kay LE
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11490-4. PubMed ID: 27527986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR.
    Vallurupalli P; Bouvignies G; Kay LE
    J Phys Chem B; 2011 Dec; 115(49):14891-900. PubMed ID: 22077866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying "invisible" excited protein states in slow exchange with a major state conformation.
    Vallurupalli P; Bouvignies G; Kay LE
    J Am Chem Soc; 2012 May; 134(19):8148-61. PubMed ID: 22554188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation.
    Waudby CA; Christodoulou J
    Magn Reson (Gott); 2021; 2(2):777-793. PubMed ID: 37905227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R(1ρ): an application to αB-crystallin.
    Baldwin AJ; Kay LE
    J Biomol NMR; 2012 May; 53(1):1-12. PubMed ID: 22476760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CEST NMR experiment to obtain glycine
    Tiwari VP; Vallurupalli P
    J Biomol NMR; 2020 Sep; 74(8-9):443-455. PubMed ID: 32696193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.