BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30276607)

  • 1. A methyl
    Gopalan AB; Yuwen T; Kay LE; Vallurupalli P
    J Biomol NMR; 2018 Oct; 72(1-2):79-91. PubMed ID: 30276607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the signs of the methyl
    Gopalan AB; Vallurupalli P
    J Biomol NMR; 2018 Mar; 70(3):187-202. PubMed ID: 29564579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methyl-TROSY based
    Tugarinov V; Baber JL; Clore GM
    J Biomol NMR; 2023 Jun; 77(3):83-91. PubMed ID: 37095392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
    Skrynnikov NR; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
    Vallurupalli P; Hansen DF; Lundström P; Kay LE
    J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments.
    Reddy JG; Pratihar S; Ban D; Frischkorn S; Becker S; Griesinger C; Lee D
    J Biomol NMR; 2018 Jan; 70(1):1-9. PubMed ID: 29188417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Diffusion Constants of Invisible Protein Conformers by Triple-Quantum
    Yuwen T; Sekhar A; Baldwin AJ; Vallurupalli P; Kay LE
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16777-16780. PubMed ID: 30370966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting
    Yuwen T; Kay LE
    J Biomol NMR; 2019 Nov; 73(10-11):641-650. PubMed ID: 31646421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for slow motion in proteins by multiple refocusing of heteronuclear nitrogen/proton multiple quantum coherences in NMR.
    Dittmer J; Bodenhausen G
    J Am Chem Soc; 2004 Feb; 126(5):1314-5. PubMed ID: 14759169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes.
    Hansen AL; Lundström P; Velyvis A; Kay LE
    J Am Chem Soc; 2012 Feb; 134(6):3178-89. PubMed ID: 22300166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal relaxation optimized amide
    Yuwen T; Kay LE
    J Biomol NMR; 2017 Apr; 67(4):295-307. PubMed ID: 28357518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multiple-Quantum Spectroscopy.
    Yuwen T; Vallurupalli P; Kay LE
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11490-4. PubMed ID: 27527986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR.
    Vallurupalli P; Bouvignies G; Kay LE
    J Phys Chem B; 2011 Dec; 115(49):14891-900. PubMed ID: 22077866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying "invisible" excited protein states in slow exchange with a major state conformation.
    Vallurupalli P; Bouvignies G; Kay LE
    J Am Chem Soc; 2012 May; 134(19):8148-61. PubMed ID: 22554188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation.
    Waudby CA; Christodoulou J
    Magn Reson (Gott); 2021; 2(2):777-793. PubMed ID: 37905227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R(1ρ): an application to αB-crystallin.
    Baldwin AJ; Kay LE
    J Biomol NMR; 2012 May; 53(1):1-12. PubMed ID: 22476760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CEST NMR experiment to obtain glycine
    Tiwari VP; Vallurupalli P
    J Biomol NMR; 2020 Sep; 74(8-9):443-455. PubMed ID: 32696193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.