These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30276607)

  • 21. An optimized relaxation-based coherence transfer NMR experiment for the measurement of side-chain order in methyl-protonated, highly deuterated proteins.
    Sun H; Kay LE; Tugarinov V
    J Phys Chem B; 2011 Dec; 115(49):14878-84. PubMed ID: 22040035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme.
    Korzhnev DM; Kloiber K; Kanelis V; Tugarinov V; Kay LE
    J Am Chem Soc; 2004 Mar; 126(12):3964-73. PubMed ID: 15038751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
    Mulder FA; Hon B; Mittermaier A; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Feb; 124(7):1443-51. PubMed ID: 11841314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion.
    Chao FA; Li Y; Zhang Y; Byrd RA
    J Am Chem Soc; 2019 Jul; 141(30):11881-11891. PubMed ID: 31293161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR probing of invisible excited states using selectively labeled RNAs.
    LeBlanc RM; Longhini AP; Tugarinov V; Dayie TK
    J Biomol NMR; 2018 Jul; 71(3):165-172. PubMed ID: 29858959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Double-Resonance CEST Experiment To Study Multistate Protein Conformational Exchange: An Application to Protein Folding.
    Vallurupalli P; Tiwari VP; Ghosh S
    J Phys Chem Lett; 2019 Jun; 10(11):3051-3056. PubMed ID: 31081645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection.
    Jiang B; Yu B; Zhang X; Liu M; Yang D
    J Magn Reson; 2015 Aug; 257():1-7. PubMed ID: 26037134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-correlated spin relaxation effects in methyl 1H CPMG-based relaxation dispersion experiments: complications and a simple solution.
    Korzhnev DM; Mittermaier AK; Kay LE
    J Biomol NMR; 2005 Apr; 31(4):337-42. PubMed ID: 15929000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General Expressions for Carr-Purcell-Meiboom-Gill Relaxation Dispersion for N-Site Chemical Exchange.
    Koss H; Rance M; Palmer AG
    Biochemistry; 2018 Aug; 57(31):4753-4763. PubMed ID: 30040382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative measurement of exchange dynamics in proteins via (13)C relaxation dispersion of (13)CHD2-labeled samples.
    Rennella E; Schuetz AK; Kay LE
    J Biomol NMR; 2016 Jun; 65(2):59-64. PubMed ID: 27251650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments.
    Myint W; Ishima R
    J Biomol NMR; 2009 Sep; 45(1-2):207-16. PubMed ID: 19618276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange.
    Koss H; Rance M; Palmer AG
    J Magn Reson; 2020 Dec; 321():106846. PubMed ID: 33128917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practical considerations for investigation of protein conformational dynamics by
    Walinda E; Morimoto D; Shirakawa M; Sugase K
    J Biomol NMR; 2017 Mar; 67(3):201-209. PubMed ID: 28243767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.
    Chao FA; Byrd RA
    J Magn Reson; 2017 Apr; 277():8-14. PubMed ID: 28189995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow dynamics in folded and unfolded states of an SH3 domain.
    Tollinger M; Skrynnikov NR; Mulder FA; Forman-Kay JD; Kay LE
    J Am Chem Soc; 2001 Nov; 123(46):11341-52. PubMed ID: 11707108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new class of CEST experiment based on selecting different magnetization components at the start and end of the CEST relaxation element: an application to
    Yuwen T; Kay LE
    J Biomol NMR; 2018 Feb; 70(2):93-102. PubMed ID: 29352366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-selective
    Raum HN; Schörghuber J; Dreydoppel M; Lichtenecker RJ; Weininger U
    J Biomol NMR; 2019 Nov; 73(10-11):633-639. PubMed ID: 31506857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studying sparsely populated conformational states in RNA combining chemical synthesis and solution NMR spectroscopy.
    Strebitzer E; Nußbaumer F; Kremser J; Tollinger M; Kreutz C
    Methods; 2018 Sep; 148():39-47. PubMed ID: 29753787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CPMG sequences with enhanced sensitivity to chemical exchange.
    Wang C; Grey MJ; Palmer AG
    J Biomol NMR; 2001 Dec; 21(4):361-6. PubMed ID: 11824755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of correlated dynamics on multiple timescales by measurement of the differential relaxation of zero- and double-quantum coherences involving sidechain methyl groups in proteins.
    Del Rio A; Anand A; Ghose R
    J Magn Reson; 2006 May; 180(1):1-17. PubMed ID: 16473030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.