These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30276607)

  • 61. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins.
    Hansen DF; Vallurupalli P; Kay LE
    J Phys Chem B; 2008 May; 112(19):5898-904. PubMed ID: 18001083
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy.
    Sun H; Godoy-Ruiz R; Tugarinov V
    J Biomol NMR; 2012 Mar; 52(3):233-43. PubMed ID: 22314703
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of chemical exchange in tryptophan-albumin solution through (19)F multicomponent transverse relaxation dispersion analysis.
    Lin PC
    J Biomol NMR; 2015 Jun; 62(2):121-7. PubMed ID: 25900068
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme.
    Mulder FA; Skrynnikov NR; Hon B; Dahlquist FW; Kay LE
    J Am Chem Soc; 2001 Feb; 123(5):967-75. PubMed ID: 11456632
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.
    Hass MA; Yilmaz A; Christensen HE; Led JJ
    J Biomol NMR; 2009 Aug; 44(4):225-33. PubMed ID: 19533375
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R1rho methods.
    Auer R; Hansen DF; Neudecker P; Korzhnev DM; Muhandiram DR; Konrat R; Kay LE
    J Biomol NMR; 2010 Mar; 46(3):205-16. PubMed ID: 20033258
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.
    Traaseth NJ; Chao FA; Masterson LR; Mangia S; Garwood M; Michaeli S; Seelig B; Veglia G
    J Magn Reson; 2012 Jun; 219():75-82. PubMed ID: 22621977
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme.
    Skrynnikov NR; Mulder FA; Hon B; Dahlquist FW; Kay LE
    J Am Chem Soc; 2001 May; 123(19):4556-66. PubMed ID: 11457242
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy.
    Baldwin AJ; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Aug; 131(33):11939-48. PubMed ID: 19627152
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of specific protein association by 15N CPMG relaxation dispersion NMR: the GB1(A34F) monomer-dimer equilibrium.
    Jee J; Ishima R; Gronenborn AM
    J Phys Chem B; 2008 May; 112(19):6008-12. PubMed ID: 18004837
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes.
    Myint W; Cai Y; Schiffer CA; Ishima R
    J Biomol NMR; 2012 May; 53(1):13-23. PubMed ID: 22466935
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An exchange-free measure of 15N transverse relaxation: an NMR spectroscopy application to the study of a folding intermediate with pervasive chemical exchange.
    Hansen DF; Yang D; Feng H; Zhou Z; Wiesner S; Bai Y; Kay LE
    J Am Chem Soc; 2007 Sep; 129(37):11468-79. PubMed ID: 17722922
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Accuracy of optimized chemical-exchange parameters derived by fitting CPMG R2 dispersion profiles when R2(0a) not = R2(0b).
    Ishima R; Torchia DA
    J Biomol NMR; 2006 Apr; 34(4):209-19. PubMed ID: 16645811
    [TBL] [Abstract][Full Text] [Related]  

  • 74. NMR Relaxation Dispersion Methods for the Structural and Dynamic Analysis of Quickly Interconverting, Low-Populated Conformational Substates.
    Veeramuthu Natarajan S; D'Amelio N; Muñoz V
    Methods Mol Biol; 2022; 2376():187-203. PubMed ID: 34845611
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CPMG relaxation dispersion.
    Ishima R
    Methods Mol Biol; 2014; 1084():29-49. PubMed ID: 24061914
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR.
    Krempl C; Wurm JP; Beck Erlach M; Kremer W; Sprangers R
    J Mol Biol; 2023 Jun; 435(11):167922. PubMed ID: 37330282
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CPMG pulse sequence for relaxation dispersion that cancels artifacts independently of spin states.
    Konuma T; Kurita JI; Ikegami T
    J Magn Reson; 2023 Jul; 352():107489. PubMed ID: 37247581
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Visualizing side chains of invisible protein conformers by solution NMR.
    Bouvignies G; Vallurupalli P; Kay LE
    J Mol Biol; 2014 Feb; 426(3):763-74. PubMed ID: 24211467
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An enhanced sensitivity methyl
    Huang R; Brady JP; Sekhar A; Yuwen T; Kay LE
    J Biomol NMR; 2017 Aug; 68(4):249-255. PubMed ID: 28717997
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sensitivity enhancement in multiple-quantum NMR experiments with CPMG detection.
    Lim KH; Nguyen T; Mazur T; Wemmer DE; Pines A
    J Magn Reson; 2002 Jul; 157(1):160-2. PubMed ID: 12202146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.