BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30276712)

  • 1. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum.
    Lu W; Alanzi AR; Abugrain ME; Ito T; Mahmud T
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10589-10601. PubMed ID: 30276712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation.
    Eida AA; Mahmud T
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4337-4345. PubMed ID: 31025074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrogating the Tailoring Steps of Pactamycin Biosynthesis and Accessing New Pactamycin Analogues.
    Abugrain ME; Lu W; Li Y; Serrill JD; Brumsted CJ; Osborn AR; Alani A; Ishmael JE; Kelly JX; Mahmud T
    Chembiochem; 2016 Sep; 17(17):1585-8. PubMed ID: 27305101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning of the pactamycin biosynthetic gene cluster and characterization of a crucial glycosyltransferase prior to a unique cyclopentane ring formation.
    Kudo F; Kasama Y; Hirayama T; Eguchi T
    J Antibiot (Tokyo); 2007 Aug; 60(8):492-503. PubMed ID: 17827660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed biosynthesis of 5"-fluoropactamycin in Streptomyces pactum.
    Adams ES; Rinehart KL
    J Antibiot (Tokyo); 1994 Dec; 47(12):1456-65. PubMed ID: 7844040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues.
    Ito T; Roongsawang N; Shirasaka N; Lu W; Flatt PM; Kasanah N; Miranda C; Mahmud T
    Chembiochem; 2009 Sep; 10(13):2253-65. PubMed ID: 19670201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis.
    Martín JF; Rodríguez-García A; Liras P
    J Antibiot (Tokyo); 2017 May; 70(5):534-541. PubMed ID: 28293039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pactamycin production by Streptomyces pactum.
    BHUYAN BK
    Appl Microbiol; 1962 Jul; 10(4):302-4. PubMed ID: 13868850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis.
    Mendes MV; Tunca S; Antón N; Recio E; Sola-Landa A; Aparicio JF; Martín JF
    Metab Eng; 2007 Mar; 9(2):217-27. PubMed ID: 17142079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans.
    Sola-Landa A; Moura RS; Martín JF
    Proc Natl Acad Sci U S A; 2003 May; 100(10):6133-8. PubMed ID: 12730372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the Pho regulon in Streptomyces tsukubaensis.
    Ordóñez-Robles M; Santos-Beneit F; Rodríguez-García A; Martín JF
    Microbiol Res; 2017 Dec; 205():80-87. PubMed ID: 28942849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum.
    Ballesta JP; Cundliffe E
    J Bacteriol; 1991 Nov; 173(22):7213-8. PubMed ID: 1657884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387.
    Meng X; Wang W; Xie Z; Li P; Li Y; Guo Z; Lu Y; Yang J; Guan K; Lu Z; Tan H; Chen Y
    Sci China Life Sci; 2017 Sep; 60(9):980-991. PubMed ID: 28812297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance to pactamycin in clones of Streptomyces lividans containing DNA from pactamycin-producing Streptomyces pactum.
    Calcutt MJ; Cundliffe E
    Gene; 1990 Sep; 93(1):85-9. PubMed ID: 2227428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional Studies on a
    Álvarez-Álvarez R; Rodríguez-García A; Martínez-Burgo Y; Martín JF; Liras P
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Characterization of 3-Aminobenzoic Acid Adenylation Enzyme PctU and UDP-N-Acetyl-d-Glucosamine: 3-Aminobenzoyl-ACP Glycosyltransferase PctL in Pactamycin Biosynthesis.
    Kudo F; Zhang J; Sato S; Hirayama A; Eguchi T
    Chembiochem; 2019 Oct; 20(19):2458-2462. PubMed ID: 31059166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation and increased production of asukamycin in engineered Streptomyces nodosus subsp. asukaensis strains.
    Xie P; Sheng Y; Ito T; Mahmud T
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):451-60. PubMed ID: 22555913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24.
    Ghorbel S; Kormanec J; Artus A; Virolle MJ
    J Bacteriol; 2006 Jan; 188(2):677-86. PubMed ID: 16385057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis.
    Yang R; Liu X; Wen Y; Song Y; Chen Z; Li J
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10547-57. PubMed ID: 26298701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis.
    Eida AA; Abugrain ME; Brumsted CJ; Mahmud T
    Nat Chem Biol; 2019 Aug; 15(8):795-802. PubMed ID: 31308531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.