BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30276736)

  • 1. Metaproteomics Study of the Gut Microbiome.
    Lai LA; Tong Z; Chen R; Pan S
    Methods Mol Biol; 2019; 1871():123-132. PubMed ID: 30276736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Metaproteomics Approach for the Study of Human Microbiomes.
    Zhang X; Chen W; Ning Z; Mayne J; Mack D; Stintzi A; Tian R; Figeys D
    Anal Chem; 2017 Sep; 89(17):9407-9415. PubMed ID: 28749657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.
    Zhang X; Ning Z; Mayne J; Moore JI; Li J; Butcher J; Deeke SA; Chen R; Chiang CK; Wen M; Mack D; Stintzi A; Figeys D
    Microbiome; 2016 Jun; 4(1):31. PubMed ID: 27343061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetaProClust-MS1: an MS1 Profiling Approach for Large-Scale Microbiome Screening.
    Simopoulos CMA; Ning Z; Li L; Khamis MM; Zhang X; Lavallée-Adam M; Figeys D
    mSystems; 2022 Aug; 7(4):e0038122. PubMed ID: 35950762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome.
    Peters DL; Wang W; Zhang X; Ning Z; Mayne J; Figeys D
    Proteomics; 2019 Aug; 19(16):e1800363. PubMed ID: 31321880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MetaLab 2.0 Enables Accurate Post-Translational Modifications Profiling in Metaproteomics.
    Cheng K; Ning Z; Zhang X; Li L; Liao B; Mayne J; Figeys D
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1473-1482. PubMed ID: 32396346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the impact of protein extraction methods for human gut metaproteomics.
    Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D
    J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes.
    Blakeley-Ruiz JA; Erickson AR; Cantarel BL; Xiong W; Adams R; Jansson JK; Fraser CM; Hettich RL
    Microbiome; 2019 Feb; 7(1):18. PubMed ID: 30744677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease.
    Mayers MD; Moon C; Stupp GS; Su AI; Wolan DW
    J Proteome Res; 2017 Feb; 16(2):1014-1026. PubMed ID: 28052195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic.
    Liu CW; Chi L; Tu P; Xue J; Ru H; Lu K
    J Proteome Res; 2019 Mar; 18(3):970-981. PubMed ID: 30545218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.
    Xiong W; Brown CT; Morowitz MJ; Banfield JF; Hettich RL
    Microbiome; 2017 Jul; 5(1):72. PubMed ID: 28693612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective and Guidelines for Metaproteomics in Microbiome Studies.
    Zhang X; Figeys D
    J Proteome Res; 2019 Jun; 18(6):2370-2380. PubMed ID: 31009573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaLab: an automated pipeline for metaproteomic data analysis.
    Cheng K; Ning Z; Zhang X; Li L; Liao B; Mayne J; Stintzi A; Figeys D
    Microbiome; 2017 Dec; 5(1):157. PubMed ID: 29197424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Independent Acquisition Mass Spectrometry in Metaproteomics of Gut Microbiota-Implementation and Computational Analysis.
    Aakko J; Pietilä S; Suomi T; Mahmoudian M; Toivonen R; Kouvonen P; Rokka A; Hänninen A; Elo LL
    J Proteome Res; 2020 Jan; 19(1):432-436. PubMed ID: 31755272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metaproteomic analysis of human gut microbiota: where are we heading?
    Lee PY; Chin SF; Neoh HM; Jamal R
    J Biomed Sci; 2017 Jun; 24(1):36. PubMed ID: 28606141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.
    Xiong W; Abraham PE; Li Z; Pan C; Hettich RL
    Proteomics; 2015 Oct; 15(20):3424-38. PubMed ID: 25914197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut.
    Xiong W; Giannone RJ; Morowitz MJ; Banfield JF; Hettich RL
    J Proteome Res; 2015 Jan; 14(1):133-41. PubMed ID: 25350865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Landscape and Perspectives of the Human Gut Metaproteomics.
    Sun Z; Ning Z; Figeys D
    Mol Cell Proteomics; 2024 May; 23(5):100763. PubMed ID: 38608842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metaproteomic strategies and applications for gut microbial research.
    Xiao M; Yang J; Feng Y; Zhu Y; Chai X; Wang Y
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3077-3088. PubMed ID: 28293710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species.
    Stamboulian M; Canderan J; Ye Y
    PLoS Comput Biol; 2022 Mar; 18(3):e1009397. PubMed ID: 35302987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.