BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 30276736)

  • 21. Novel Bioinformatics Strategies Driving Dynamic Metaproteomic Studies.
    Simopoulos CMA; Figeys D; Lavallée-Adam M
    Methods Mol Biol; 2022; 2456():319-338. PubMed ID: 35612752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatic Workflows for Metaproteomics.
    Holstein T; Muth T
    Methods Mol Biol; 2024; 2820():187-213. PubMed ID: 38941024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating in Vitro Culture Medium of Gut Microbiome with Orthogonal Experimental Design and a Metaproteomics Approach.
    Li L; Zhang X; Ning Z; Mayne J; Moore JI; Butcher J; Chiang CK; Mack D; Stintzi A; Figeys D
    J Proteome Res; 2018 Jan; 17(1):154-163. PubMed ID: 29130306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A semi-tryptic peptide centric metaproteomic mining approach and its potential utility in capturing signatures of gut microbial proteolysis.
    Yan Z; He F; Xiao F; He H; Li D; Cong L; Lin L; Zhu H; Wu Y; Yan R; Li X; Shan H
    Microbiome; 2021 Jan; 9(1):12. PubMed ID: 33436102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From mystery to mechanism: can proteomics build systems-level understanding of our gut microbes?
    Gonzalez CG; Zhang L; Elias JE
    Expert Rev Proteomics; 2017 Jun; 14(6):473-476. PubMed ID: 28335651
    [No Abstract]   [Full Text] [Related]  

  • 26. Metaproteomic investigation to assess gut microbiota shaping in newborn mice: A combined taxonomic, functional and quantitative approach.
    Levi Mortera S; Soggiu A; Vernocchi P; Del Chierico F; Piras C; Carsetti R; Marzano V; Britti D; Urbani A; Roncada P; Putignani L
    J Proteomics; 2019 Jul; 203():103378. PubMed ID: 31102759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive and scalable database search system for metaproteomics.
    Chatterjee S; Stupp GS; Park SK; Ducom JC; Yates JR; Su AI; Wolan DW
    BMC Genomics; 2016 Aug; 17(1):642. PubMed ID: 27528457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.
    Mohammed A; Guda C
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S16. PubMed ID: 26099921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metaproteomic analysis of human gut microbiome in digestive and metabolic diseases.
    Pan S; Chen R
    Adv Clin Chem; 2020; 97():1-12. PubMed ID: 32448430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host-Gut Microbiota Interactions during Inflammatory Bowel Disease.
    Leber A; Hontecillas R; Tubau-Juni N; Zoccoli-Rodriguez V; Abedi V; Bassaganya-Riera J
    Front Immunol; 2018; 9():363. PubMed ID: 29535731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics.
    Gómez-Varela D; Xian F; Grundtner S; Sondermann JR; Carta G; Schmidt M
    Front Microbiol; 2023; 14():1258703. PubMed ID: 37908546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring host responses to the gut microbiota.
    Lichtman JS; Sonnenburg JL; Elias JE
    ISME J; 2015 Sep; 9(9):1908-15. PubMed ID: 26057846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in the clinical use of metaproteomics.
    Wolf M; Schallert K; Knipper L; Sickmann A; Sczyrba A; Benndorf D; Heyer R
    Expert Rev Proteomics; 2023; 20(4-6):71-86. PubMed ID: 37249060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines.
    Valles-Colomer M; Darzi Y; Vieira-Silva S; Falony G; Raes J; Joossens M
    J Crohns Colitis; 2016 Jun; 10(6):735-46. PubMed ID: 26802086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fecal Metaproteomics Reveals Reduced Gut Inflammation and Changed Microbial Metabolism Following Lifestyle-Induced Weight Loss.
    Biemann R; Buß E; Benndorf D; Lehmann T; Schallert K; Püttker S; Reichl U; Isermann B; Schneider JG; Saake G; Heyer R
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34066026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential Lysis Approach Enables Selective Extraction of Taxon-Specific Proteins for Gut Metaproteomics.
    Wang J; Zhang X; Li L; Ning Z; Mayne J; Schmitt-Ulms C; Walker K; Cheng K; Figeys D
    Anal Chem; 2020 Apr; 92(7):5379-5386. PubMed ID: 32096399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foodomics as part of the host-microbiota-exposome interplay.
    Putignani L; Dallapiccola B
    J Proteomics; 2016 Sep; 147():3-20. PubMed ID: 27130534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing metaproteomics database construction: lessons from a study of the vaginal microbiome.
    Lee EM; Srinivasan S; Purvine SO; Fiedler TL; Leiser OP; Proll SC; Minot SS; Deatherage Kaiser BL; Fredricks DN
    mSystems; 2023 Aug; 8(4):e0067822. PubMed ID: 37350639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gut microbiome changes in overweight male adults following bowel preparation.
    Chen HM; Chen CC; Chen CC; Wang SC; Wang CL; Huang CH; Liou JS; Liu TW; Peng HL; Lin FM; Liu CY; Weng SL; Cheng CJ; Hung YF; Liao CC; Huang HD
    BMC Genomics; 2018 Dec; 19(Suppl 10):904. PubMed ID: 30598081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metaproteomics Reveals Growth Phase-Dependent Responses of an
    Hao Z; Li L; Ning Z; Zhang X; Mayne J; Cheng K; Walker K; Liu H; Figeys D
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1448-1458. PubMed ID: 32320607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.