These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30276954)

  • 41. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells.
    Jiang F; Yang D; Jiang Y; Liu T; Zhao X; Ming Y; Luo B; Qin F; Fan J; Han H; Zhang L; Zhou Y
    J Am Chem Soc; 2018 Jan; 140(3):1019-1027. PubMed ID: 29275630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics.
    Ren M; Qian X; Chen Y; Wang T; Zhao Y
    J Hazard Mater; 2022 Mar; 426():127848. PubMed ID: 34838362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oligomer Molecules for Efficient Organic Photovoltaics.
    Lin Y; Zhan X
    Acc Chem Res; 2016 Feb; 49(2):175-83. PubMed ID: 26540366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hole-Transport Materials for Perovskite Solar Cells.
    Calió L; Kazim S; Grätzel M; Ahmad S
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14522-14545. PubMed ID: 27739653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electricity systems in the limit of free solar photovoltaics and continent-scale transmission.
    Duan L; Ruggles TH; Caldeira K
    iScience; 2022 Apr; 25(4):104108. PubMed ID: 35378859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphology control of the perovskite films for efficient solar cells.
    Zheng L; Zhang D; Ma Y; Lu Z; Chen Z; Wang S; Xiao L; Gong Q
    Dalton Trans; 2015 Jun; 44(23):10582-93. PubMed ID: 25800254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. All-Solution-Processed Thermally and Chemically Stable Copper-Nickel Core-Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells.
    Kim K; Kwon HC; Ma S; Lee E; Yun SC; Jang G; Yang H; Moon J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30337-30347. PubMed ID: 30118211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells.
    Gharibzadeh S; Nejand BA; Moshaii A; Mohammadian N; Alizadeh AH; Mohammadpour R; Ahmadi V; Alizadeh A
    ChemSusChem; 2016 Aug; 9(15):1929-37. PubMed ID: 27357330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perovskite Solar Cells: From the Laboratory to the Assembly Line.
    Abate A; Correa-Baena JP; Saliba M; Su'ait MS; Bella F
    Chemistry; 2018 Mar; 24(13):3083-3100. PubMed ID: 29080219
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.
    Halim MA
    Nanomaterials (Basel); 2012 Dec; 3(1):22-47. PubMed ID: 28348320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells.
    Molina-Ontoria A; Zimmermann I; Garcia-Benito I; Gratia P; Roldán-Carmona C; Aghazada S; Graetzel M; Nazeeruddin MK; Martín N
    Angew Chem Int Ed Engl; 2016 May; 55(21):6270-4. PubMed ID: 27061436
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perovskite solar cells: from materials to devices.
    Jung HS; Park NG
    Small; 2015 Jan; 11(1):10-25. PubMed ID: 25358818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A computational approach to interface engineering of lead-free CH
    Lazemi M; Asgharizadeh S; Bellucci S
    Phys Chem Chem Phys; 2018 Oct; 20(40):25683-25692. PubMed ID: 30255882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent Advances and Challenges in Light Conversion Phosphor Materials for Third-Generation Quantum-Dot-Sensitized Photovoltaics.
    Sekar R; Ravitchandiran A; Angaiah S
    ACS Omega; 2022 Oct; 7(40):35351-35360. PubMed ID: 36249370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.
    Reddy KG; Deepak TG; Anjusree GS; Thomas S; Vadukumpully S; Subramanian KR; Nair SV; Nair AS
    Phys Chem Chem Phys; 2014 Apr; 16(15):6838-58. PubMed ID: 24603940
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perovskite as light harvester: a game changer in photovoltaics.
    Kazim S; Nazeeruddin MK; Grätzel M; Ahmad S
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2812-24. PubMed ID: 24519832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells.
    Guo Q; Wang C; Li J; Bai Y; Wang F; Liu L; Zhang B; Hayat T; Alsaedi A; Tan Z
    Phys Chem Chem Phys; 2018 Aug; 20(33):21746-21754. PubMed ID: 30106071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.
    Ma C; Leng C; Ji Y; Wei X; Sun K; Tang L; Yang J; Luo W; Li C; Deng Y; Feng S; Shen J; Lu S; Du C; Shi H
    Nanoscale; 2016 Nov; 8(43):18309-18314. PubMed ID: 27714126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Di-isopropyl ether assisted crystallization of organic-inorganic perovskites for efficient and reproducible perovskite solar cells.
    Wang LY; Deng LL; Wang X; Wang T; Liu HR; Dai SM; Xing Z; Xie SY; Huang RB; Zheng LS
    Nanoscale; 2017 Nov; 9(45):17893-17901. PubMed ID: 29119988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.