BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 30277212)

  • 1. Cryo-EM structure of respiratory complex I at work.
    Parey K; Brandt U; Xie H; Mills DJ; Siegmund K; Vonck J; Kühlbrandt W; Zickermann V
    Elife; 2018 Oct; 7():. PubMed ID: 30277212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism.
    D'Imprima E; Mills DJ; Parey K; Brandt U; Kühlbrandt W; Zickermann V; Vonck J
    Biochim Biophys Acta; 2016 Dec; 1857(12):1935-1942. PubMed ID: 27693469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of mitochondrial complex I.
    Wirth C; Brandt U; Hunte C; Zickermann V
    Biochim Biophys Acta; 2016 Jul; 1857(7):902-14. PubMed ID: 26921811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular strain in the active/deactive-transition modulates domain coupling in respiratory complex I.
    Di Luca A; Kaila VRI
    Biochim Biophys Acta Bioenerg; 2021 May; 1862(5):148382. PubMed ID: 33513365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease.
    Parey K; Haapanen O; Sharma V; Köfeler H; Züllig T; Prinz S; Siegmund K; Wittig I; Mills DJ; Vonck J; Kühlbrandt W; Zickermann V
    Sci Adv; 2019 Dec; 5(12):eaax9484. PubMed ID: 31844670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional modules and structural basis of conformational coupling in mitochondrial complex I.
    Hunte C; Zickermann V; Brandt U
    Science; 2010 Jul; 329(5990):448-51. PubMed ID: 20595580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I.
    Zickermann V; Wirth C; Nasiri H; Siegmund K; Schwalbe H; Hunte C; Brandt U
    Science; 2015 Jan; 347(6217):44-9. PubMed ID: 25554780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation.
    Grba DN; Hirst J
    Nat Struct Mol Biol; 2020 Oct; 27(10):892-900. PubMed ID: 32747785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing the tail of ubiquinone in mitochondrial complex I.
    Angerer H; Nasiri HR; Niedergesäß V; Kerscher S; Schwalbe H; Brandt U
    Biochim Biophys Acta; 2012 Oct; 1817(10):1776-84. PubMed ID: 22484275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I.
    Galemou Yoga E; Parey K; Djurabekova A; Haapanen O; Siegmund K; Zwicker K; Sharma V; Zickermann V; Angerer H
    Nat Commun; 2020 Nov; 11(1):6008. PubMed ID: 33243981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction.
    Tocilescu MA; Fendel U; Zwicker K; Dröse S; Kerscher S; Brandt U
    Biochim Biophys Acta; 2010; 1797(6-7):625-32. PubMed ID: 20117074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaining mass: the structure of respiratory complex I-from bacterial towards mitochondrial versions.
    Letts JA; Sazanov LA
    Curr Opin Struct Biol; 2015 Aug; 33():135-45. PubMed ID: 26387075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the Deactive State of Mammalian Respiratory Complex I.
    Blaza JN; Vinothkumar KR; Hirst J
    Structure; 2018 Feb; 26(2):312-319.e3. PubMed ID: 29395787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps.
    Cabrera-Orefice A; Yoga EG; Wirth C; Siegmund K; Zwicker K; Guerrero-Castillo S; Zickermann V; Hunte C; Brandt U
    Nat Commun; 2018 Oct; 9(1):4500. PubMed ID: 30374105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge translocation by mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica measured on solid-supported membranes.
    Siebels I; Dröse S
    Biochem Biophys Res Commun; 2016 Oct; 479(2):277-282. PubMed ID: 27639643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I.
    Hameedi MA; Grba DN; Richardson KH; Jones AJY; Song W; Roessler MM; Wright JJ; Hirst J
    J Biol Chem; 2021; 296():100474. PubMed ID: 33640456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in a conserved loop in the PSST subunit of respiratory complex I affect ubiquinone binding and dynamics.
    Galemou Yoga E; Haapanen O; Wittig I; Siegmund K; Sharma V; Zickermann V
    Biochim Biophys Acta Bioenerg; 2019 Jul; 1860(7):573-581. PubMed ID: 31226318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional dissection of the proton pumping modules of mitochondrial complex I.
    Dröse S; Krack S; Sokolova L; Zwicker K; Barth HD; Morgner N; Heide H; Steger M; Nübel E; Zickermann V; Kerscher S; Brutschy B; Radermacher M; Brandt U
    PLoS Biol; 2011 Aug; 9(8):e1001128. PubMed ID: 21886480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I).
    Zickermann V; Dröse S; Tocilescu MA; Zwicker K; Kerscher S; Brandt U
    J Bioenerg Biomembr; 2008 Oct; 40(5):475-83. PubMed ID: 18982432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH oxidation drives respiratory Na+ transport in mitochondria from Yarrowia lipolytica.
    Lin PC; Puhar A; Steuber J
    Arch Microbiol; 2008 Oct; 190(4):471-80. PubMed ID: 18551278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.