BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30277537)

  • 21. Crystal structure of the nuclease and capping domain of SbcD from Staphylococcus aureus.
    Lee J; Jo I; Ahn J; Hong S; Jeong S; Kwon A; Ha NC
    J Microbiol; 2021 Jun; 59(6):584-589. PubMed ID: 33877576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular architecture of the HerA-NurA DNA double-strand break resection complex.
    Byrne RT; Schuller JM; Unverdorben P; Förster F; Hopfner KP
    FEBS Lett; 2014 Dec; 588(24):4637-44. PubMed ID: 25447518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites.
    Deshpande RA; Lee JH; Paull TT
    Nucleic Acids Res; 2017 May; 45(9):5255-5268. PubMed ID: 28369545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex.
    Liu Y; Sung S; Kim Y; Li F; Gwon G; Jo A; Kim AK; Kim T; Song OK; Lee SE; Cho Y
    EMBO J; 2016 Apr; 35(7):743-58. PubMed ID: 26717941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.
    Barfoot T; Herdendorf TJ; Behning BR; Stohr BA; Gao Y; Kreuzer KN; Nelson SW
    J Biol Chem; 2015 Sep; 290(39):23905-15. PubMed ID: 26242734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP hydrolysis by RAD50 protein switches MRE11 enzyme from endonuclease to exonuclease.
    Majka J; Alford B; Ausio J; Finn RM; McMurray CT
    J Biol Chem; 2012 Jan; 287(4):2328-41. PubMed ID: 22102415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of ExoI and SbcCD nucleases in "reckless" DNA degradation in recA mutants of Escherichia coli.
    Zahradka K; Buljubasić M; Petranović M; Zahradka D
    J Bacteriol; 2009 Mar; 191(5):1677-87. PubMed ID: 19074388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends.
    Hopfner KP
    Bioessays; 2014 Dec; 36(12):1170-8. PubMed ID: 25213441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Double strand break unwinding and resection by the mycobacterial helicase-nuclease AdnAB in the presence of single strand DNA-binding protein (SSB).
    Unciuleac MC; Shuman S
    J Biol Chem; 2010 Nov; 285(45):34319-29. PubMed ID: 20736178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble.
    Cannavo E; Reginato G; Cejka P
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5505-5513. PubMed ID: 30819891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordination and processing of DNA ends during double-strand break repair: the role of the bacteriophage T4 Mre11/Rad50 (MR) complex.
    Almond JR; Stohr BA; Panigrahi AK; Albrecht DW; Nelson SW; Kreuzer KN
    Genetics; 2013 Nov; 195(3):739-55. PubMed ID: 23979587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair.
    Lammens K; Bemeleit DJ; Möckel C; Clausing E; Schele A; Hartung S; Schiller CB; Lucas M; Angermüller C; Söding J; Strässer K; Hopfner KP
    Cell; 2011 Apr; 145(1):54-66. PubMed ID: 21458667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection.
    Reginato G; Cannavo E; Cejka P
    Genes Dev; 2017 Dec; 31(23-24):2325-2330. PubMed ID: 29321179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex.
    Möckel C; Lammens K; Schele A; Hopfner KP
    Nucleic Acids Res; 2012 Jan; 40(2):914-27. PubMed ID: 21937514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli.
    Connelly JC; de Leau ES; Leach DR
    Nucleic Acids Res; 1999 Feb; 27(4):1039-46. PubMed ID: 9927737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SbcCD-mediated processing of covalent gyrase-DNA complex in Escherichia coli.
    Aedo S; Tse-Dinh YC
    Antimicrob Agents Chemother; 2013 Oct; 57(10):5116-9. PubMed ID: 23917316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A perfect palindrome in the Escherichia coli chromosome forms DNA hairpins on both leading- and lagging-strands.
    Azeroglu B; Lincker F; White MA; Jain D; Leach DR
    Nucleic Acids Res; 2014 Dec; 42(21):13206-13. PubMed ID: 25389268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain.
    Gao Y; Nelson SW
    J Biol Chem; 2014 Sep; 289(38):26505-26513. PubMed ID: 25077970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids.
    Yoshida T; Claverie JM; Ogata H
    Virol J; 2011 Sep; 8():427. PubMed ID: 21899737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing.
    Bzymek M; Lovett ST
    Genetics; 2001 Jun; 158(2):527-40. PubMed ID: 11404319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.