These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
4. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Zhang Y; Zhang Z; Wang Y; Su Y; Chen M Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237 [TBL] [Abstract][Full Text] [Related]
5. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231 [TBL] [Abstract][Full Text] [Related]
6. Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. Ebrahimi M; Ostrovidov S; Salehi S; Kim SB; Bae H; Khademhosseini A J Tissue Eng Regen Med; 2018 Nov; 12(11):2151-2163. PubMed ID: 30048044 [TBL] [Abstract][Full Text] [Related]
7. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Hosseini V; Ahadian S; Ostrovidov S; Camci-Unal G; Chen S; Kaji H; Ramalingam M; Khademhosseini A Tissue Eng Part A; 2012 Dec; 18(23-24):2453-65. PubMed ID: 22963391 [TBL] [Abstract][Full Text] [Related]
9. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Chen S; Nakamoto T; Kawazoe N; Chen G Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306 [TBL] [Abstract][Full Text] [Related]
10. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763 [TBL] [Abstract][Full Text] [Related]
11. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Wang PY; Yu HT; Tsai WB Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416 [TBL] [Abstract][Full Text] [Related]
12. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Bettadapur A; Suh GC; Geisse NA; Wang ER; Hua C; Huber HA; Viscio AA; Kim JY; Strickland JB; McCain ML Sci Rep; 2016 Jun; 6():28855. PubMed ID: 27350122 [TBL] [Abstract][Full Text] [Related]
13. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix. Jiao A; Moerk CT; Penland N; Perla M; Kim J; Smith AST; Murry CE; Kim DH J Biomed Mater Res A; 2018 Jun; 106(6):1543-1551. PubMed ID: 29368451 [TBL] [Abstract][Full Text] [Related]
14. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
15. Harvest of Cell-Only Muscle Fibers Using Thermally Expandable Hydrogels with Adhesive Patterns. Lee YB; Kim SJ; Kim EM; Byun H; Shin H Tissue Eng Part C Methods; 2023 Oct; 29(10):447-458. PubMed ID: 37440328 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Zhao Y; Zeng H; Nam J; Agarwal S Biotechnol Bioeng; 2009 Feb; 102(2):624-31. PubMed ID: 18958861 [TBL] [Abstract][Full Text] [Related]