BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30277634)

  • 1. Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells.
    Luo J; Samanta S; Convertino M; Dokholyan NV; Deiters A
    Chembiochem; 2018 Oct; 19(20):2178-2185. PubMed ID: 30277634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins.
    Hoppmann C; Wang L
    Methods Enzymol; 2019; 624():249-264. PubMed ID: 31370932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature.
    Goldau T; Murayama K; Brieke C; Asanuma H; Heckel A
    Chemistry; 2015 Dec; 21(49):17870-6. PubMed ID: 26489532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur and Azobenzenes, a Profitable Liaison: Straightforward Synthesis of Photoswitchable Thioglycosides with Tunable Properties.
    Berry J; Lindhorst TK; Despras G
    Chemistry; 2022 Jul; 28(39):e202200354. PubMed ID: 35537915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Redshifted Azobenzene Photoswitches by Late-Stage Functionalization.
    Konrad DB; Frank JA; Trauner D
    Chemistry; 2016 Mar; 22(13):4364-8. PubMed ID: 26889884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality].
    Nozawa K; Ishitani R; Nureki O
    Seikagaku; 2010 Jul; 82(7):617-23. PubMed ID: 20715574
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis, Derivatization and Photochemical Control of ortho-Functionalized Tetrachlorinated Azobenzene-Modified siRNAs.
    Hammill ML; Islam G; Desaulniers JP
    Chembiochem; 2020 Aug; 21(16):2367-2372. PubMed ID: 32232952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.
    Hoppmann C; Maslennikov I; Choe S; Wang L
    J Am Chem Soc; 2015 Sep; 137(35):11218-21. PubMed ID: 26301538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Redox Isomerization Strategy for Accessing Modular Azobenzene Photoswitches with Near Quantitative Bidirectional Photoconversion.
    Zhu JS; Larach JM; Tombari RJ; Gingrich PW; Bode SR; Tuck JR; Warren HT; Son JH; Duim WC; Fettinger JC; Haddadin MJ; Tantillo DJ; Kurth MJ; Olson DE
    Org Lett; 2019 Nov; 21(21):8765-8770. PubMed ID: 31638403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.
    John AA; Ramil CP; Tian Y; Cheng G; Lin Q
    Org Lett; 2015 Dec; 17(24):6258-61. PubMed ID: 26650435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside.
    Goldau T; Murayama K; Brieke C; Steinwand S; Mondal P; Biswas M; Burghardt I; Wachtveitl J; Asanuma H; Heckel A
    Chemistry; 2015 Feb; 21(7):2845-54. PubMed ID: 25537843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Synthesis of Visible-Light-Responsive Azobenzene Building Blocks for Chemical Biology.
    Volarić J; Buter J; Schulte AM; van den Berg KO; Santamaría-Aranda E; Szymanski W; Feringa BL
    J Org Chem; 2022 Nov; 87(21):14319-14333. PubMed ID: 36285612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast, visible-light-sensitive azobenzene for bioorthogonal ligation.
    Poloni C; Szymański W; Hou L; Browne WR; Feringa BL
    Chemistry; 2014 Jan; 20(4):946-51. PubMed ID: 24425675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoswitching azo compounds in vivo with red light.
    Samanta S; Beharry AA; Sadovski O; McCormick TM; Babalhavaeji A; Tropepe V; Woolley GA
    J Am Chem Soc; 2013 Jul; 135(26):9777-84. PubMed ID: 23750583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Photocontrol of Thrombin Activity by Replacing Loops of Thrombin Binding Aptamer using Azobenzene Derivatives.
    Mo M; Kong D; Ji H; Lin D; Tang X; Yang Z; He Y; Wu L
    Bioconjug Chem; 2019 Jan; 30(1):231-241. PubMed ID: 30582682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different formation kinetics and photoisomerization behavior of self-assembled monolayers of thiols and dithiolanes bearing azobenzene moieties.
    Yeung CL; Charlesworth S; Iqbal P; Bowen J; Preece JA; Mendes PM
    Phys Chem Chem Phys; 2013 Jul; 15(26):11014-24. PubMed ID: 23712584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cis-state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface.
    Korbus M; Backé S; Meyer-Almes FJ
    J Mol Recognit; 2015 Mar; 28(3):201-9. PubMed ID: 25664524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-guest self-assembly toward reversible visible-light-responsive switching for bacterial adhesion.
    Bian Q; Chen S; Xing Y; Yuan D; Lv L; Wang G
    Acta Biomater; 2018 Aug; 76():39-45. PubMed ID: 30078424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.