BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 30277645)

  • 1. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
    Horikoshi S; Serpone N
    Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward rapid, "green", predictable microwave-assisted synthesis.
    Roberts BA; Strauss CR
    Acc Chem Res; 2005 Aug; 38(8):653-61. PubMed ID: 16104688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave: An Important and Efficient Tool for the Synthesis of Biological Potent Organic Compounds.
    Kumari K; Vishvakarma VK; Singh P; Patel R; Chandra R
    Curr Med Chem; 2017; 24(41):4579-4595. PubMed ID: 28554323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature.
    Kappe CO; Dallinger D
    Mol Divers; 2009 May; 13(2):71-193. PubMed ID: 19381851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of combinatorial chemistry by microwave-assisted organic synthesis.
    Lidström P; Westman J; Lewis A
    Comb Chem High Throughput Screen; 2002 Sep; 5(6):441-58. PubMed ID: 12470274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future trends in microwave synthesis.
    Collins MJ
    Future Med Chem; 2010 Feb; 2(2):151-5. PubMed ID: 21426181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in organic synthesis using polymer-supported reagents and scavengers under microwave irradiation.
    Bhattacharyya S
    Mol Divers; 2005; 9(4):253-7. PubMed ID: 16425438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of microwave-assisted organic synthesis on the multigram scale.
    Wolkenberg SE; Shipe WD; Lindsley CW; Guare JP; Pawluczyk JM
    Curr Opin Drug Discov Devel; 2005 Nov; 8(6):701-8. PubMed ID: 16312146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-promoted organic synthesis using ionic liquids: a mini review.
    Leadbeatera NE; Torenius HM; Tye H
    Comb Chem High Throughput Screen; 2004 Aug; 7(5):511-28. PubMed ID: 15320715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry.
    Rejasse B; Lamare S; Legoy MD; Besson T
    J Enzyme Inhib Med Chem; 2007 Oct; 22(5):518-26. PubMed ID: 18035819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating.
    Dai WM; Shi J
    Comb Chem High Throughput Screen; 2007 Dec; 10(10):837-56. PubMed ID: 18288947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled microwave heating in modern organic synthesis.
    Kappe CO
    Angew Chem Int Ed Engl; 2004 Nov; 43(46):6250-84. PubMed ID: 15558676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel processing of microwave-assisted organic transformations.
    Kappe CO; Matloobi M
    Comb Chem High Throughput Screen; 2007 Nov; 10(9):735-50. PubMed ID: 18478956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single-Mode Heating Toward Large-Scale Applications.
    Barham JP; Koyama E; Norikane Y; Ohneda N; Yoshimura T
    Chem Rec; 2019 Jan; 19(1):188-203. PubMed ID: 30457695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-induced Bismuth Salts-mediated Synthesis of Molecules of Medicinal Interests.
    Bandyopadhyay D; Chavez A; Banik BK
    Curr Med Chem; 2017; 24(41):4677-4713. PubMed ID: 28322155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata.
    Joseph S; Mathew B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1371-9. PubMed ID: 25459695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.
    Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N
    Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds.
    Kundu S; Liang H
    Langmuir; 2008 Sep; 24(17):9668-74. PubMed ID: 18671418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.