These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 30277767)
1. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor-Acceptor Cyanoarenes. Speckmeier E; Fischer TG; Zeitler K J Am Chem Soc; 2018 Nov; 140(45):15353-15365. PubMed ID: 30277767 [TBL] [Abstract][Full Text] [Related]
2. Unveiling Extreme Photoreduction Potentials of Donor-Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. Xu J; Cao J; Wu X; Wang H; Yang X; Tang X; Toh RW; Zhou R; Yeow EKL; Wu J J Am Chem Soc; 2021 Aug; 143(33):13266-13273. PubMed ID: 34428911 [TBL] [Abstract][Full Text] [Related]
3. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Shang TY; Lu LH; Cao Z; Liu Y; He WM; Yu B Chem Commun (Camb); 2019 May; 55(38):5408-5419. PubMed ID: 31020957 [TBL] [Abstract][Full Text] [Related]
4. Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. Bryden MA; Millward F; Matulaitis T; Chen D; Villa M; Fermi A; Cetin S; Ceroni P; Zysman-Colman E J Org Chem; 2023 May; 88(10):6364-6373. PubMed ID: 35820116 [TBL] [Abstract][Full Text] [Related]
5. Photogeneration of Chlorine Radical from a Self-Assembled Fluorous 4CzIPN•Chloride Complex: Application in C-H Bond Functionalization. Carré V; Godard P; Méreau R; Jacquot de Rouville HP; Jonusauskas G; McClenaghan N; Tassaing T; Vincent JM Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202402964. PubMed ID: 38634355 [TBL] [Abstract][Full Text] [Related]
6. Structural elaboration of dicyanopyrazine: towards push-pull molecules with tailored photoredox activity. Hloušková Z; Klikar M; Pytela O; Almonasy N; Růžička A; Jandová V; Bureš F RSC Adv; 2019 Jul; 9(41):23797-23809. PubMed ID: 35530614 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Majek M; Jacobi von Wangelin A Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097 [TBL] [Abstract][Full Text] [Related]
11. Photoredox-HAT Catalysis for Primary Amine α-C-H Alkylation: Mechanistic Insight with Transient Absorption Spectroscopy. Sneha M; Thornton GL; Lewis-Borrell L; Ryder ASH; Espley SG; Clark IP; Cresswell AJ; Grayson MN; Orr-Ewing AJ ACS Catal; 2023 Jun; 13(12):8004-8013. PubMed ID: 37342833 [TBL] [Abstract][Full Text] [Related]
12. Spectral and Electrochemical Properties of Common Photocatalysts in Water: A Compendium for Aqueous Photoredox Catalysis. Gary S; Landry M; Bloom S Synlett; 2023 Oct; 34(16):1911-1914. PubMed ID: 38699236 [TBL] [Abstract][Full Text] [Related]
13. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Tlili A; Lakhdar S Angew Chem Int Ed Engl; 2021 Sep; 60(36):19526-19549. PubMed ID: 33881207 [TBL] [Abstract][Full Text] [Related]
14. Formation and degradation of strongly reducing cyanoarene-based radical anions towards efficient radical anion-mediated photoredox catalysis. Kwon Y; Lee J; Noh Y; Kim D; Lee Y; Yu C; Roldao JC; Feng S; Gierschner J; Wannemacher R; Kwon MS Nat Commun; 2023 Jan; 14(1):92. PubMed ID: 36609499 [TBL] [Abstract][Full Text] [Related]
15. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis. Chatterjee T; Iqbal N; You Y; Cho EJ Acc Chem Res; 2016 Oct; 49(10):2284-2294. PubMed ID: 27626105 [TBL] [Abstract][Full Text] [Related]
16. One-Step Electropolymerization of a Dicyanobenzene-Carbazole-Imidazole Dye to Prepare Photoactive Redox Polymer Films. Liu J; Perez OM; Lavergne D; Rasu L; Murphy E; Galvez-Rodriguez A; Bergens SH Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631397 [TBL] [Abstract][Full Text] [Related]
17. Photoredox Chemistry with Organic Catalysts: Role of Computational Methods. Kron KJ; Rodriguez-Katakura A; Elhessen R; Mallikarjun Sharada S ACS Omega; 2021 Dec; 6(49):33253-33264. PubMed ID: 34926877 [TBL] [Abstract][Full Text] [Related]
18. A toolbox approach to revealing a series of naphthocarbazoles to showcase photocatalytic reductive syntheses. Das S; Kundu S; Metya A; Maji MS Chem Sci; 2024 Aug; 15(33):13466-13474. PubMed ID: 39183925 [TBL] [Abstract][Full Text] [Related]
19. Porphyrins as Photoredox Catalysts in Csp de Souza AAN; Silva NS; Müller AV; Polo AS; Brocksom TJ; de Oliveira KT J Org Chem; 2018 Dec; 83(24):15077-15086. PubMed ID: 30456953 [TBL] [Abstract][Full Text] [Related]
20. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis. Wang L; Huang W; Li R; Gehrig D; Blom PW; Landfester K; Zhang KA Angew Chem Int Ed Engl; 2016 Aug; 55(33):9783-7. PubMed ID: 27378555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]