These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30277767)

  • 21. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning Redox Potential of Gold Nanoparticle Photocatalysts by Light.
    Mao Z; Espinoza R; Garcia A; Enwright A; Vang H; Nguyen SC
    ACS Nano; 2020 Jun; 14(6):7038-7045. PubMed ID: 32441918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspective: How can ultrafast laser spectroscopy inform the design of new organic photoredox catalysts for chemical and materials synthesis?
    Orr-Ewing AJ
    Struct Dyn; 2019 Jan; 6(1):010901. PubMed ID: 30868082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts.
    Sau SC; Schmitz M; Burdenski C; Baumert M; Antoni PW; Kerzig C; Hansmann MM
    J Am Chem Soc; 2024 Feb; 146(5):3416-3426. PubMed ID: 38266168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid Catalysts for Enantioselective Photo-Phosphoric Acid Catalysis.
    Rolka AB; Archipowa N; Kutta RJ; König B; Toste FD
    J Org Chem; 2023 May; 88(10):6509-6522. PubMed ID: 37126846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward molecular catalysts by computer.
    Raugei S; DuBois DL; Rousseau R; Chen S; Ho MH; Bullock RM; Dupuis M
    Acc Chem Res; 2015 Feb; 48(2):248-55. PubMed ID: 25574854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic Photoredox Catalysis.
    Romero NA; Nicewicz DA
    Chem Rev; 2016 Sep; 116(17):10075-166. PubMed ID: 27285582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and application of aminoacridinium organophotoredox catalysts.
    Zilate B; Fischer C; Sparr C
    Chem Commun (Camb); 2020 Feb; 56(12):1767-1775. PubMed ID: 31998897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.
    Joshi-Pangu A; Lévesque F; Roth HG; Oliver SF; Campeau LC; Nicewicz D; DiRocco DA
    J Org Chem; 2016 Aug; 81(16):7244-9. PubMed ID: 27454776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ad Hoc Adjustment of Photoredox Properties by the Late-Stage Diversification of Acridinium Photocatalysts.
    Hutskalova V; Sparr C
    Org Lett; 2021 Jul; 23(13):5143-5147. PubMed ID: 34110179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis.
    Lévêque C; Chenneberg L; Corcé V; Ollivier C; Fensterbank L
    Chem Commun (Camb); 2016 Aug; 52(64):9877-80. PubMed ID: 27373923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-free, regioselective, visible light activation of 4CzIPN for the arylation of 2
    Saritha R; Annes SB; Ramesh S
    RSC Adv; 2021 Apr; 11(23):14079-14084. PubMed ID: 35423934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Rational Approach to Organo-Photocatalysis: Novel Designs and Structure-Property Relationships.
    Vega-Peñaloza A; Mateos J; Companyó X; Escudero-Casao M; Dell'Amico L
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1082-1097. PubMed ID: 32568437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.