These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 30277855)
21. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Wang PY; Yu HT; Tsai WB Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416 [TBL] [Abstract][Full Text] [Related]
22. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Hosseini V; Ahadian S; Ostrovidov S; Camci-Unal G; Chen S; Kaji H; Ramalingam M; Khademhosseini A Tissue Eng Part A; 2012 Dec; 18(23-24):2453-65. PubMed ID: 22963391 [TBL] [Abstract][Full Text] [Related]
23. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation. van der Schaft DW; van Spreeuwel AC; Boonen KJ; Langelaan ML; Bouten CV; Baaijens FP J Vis Exp; 2013 Mar; (73):e4267. PubMed ID: 23542531 [TBL] [Abstract][Full Text] [Related]
24. Electrical Pulse Stimulation of Primary Human Skeletal Muscle Cells. Nikolić N; Aas V Methods Mol Biol; 2019; 1889():17-24. PubMed ID: 30367406 [TBL] [Abstract][Full Text] [Related]
25. Characterization of an acute muscle contraction model using cultured C2C12 myotubes. Manabe Y; Miyatake S; Takagi M; Nakamura M; Okeda A; Nakano T; Hirshman MF; Goodyear LJ; Fujii NL PLoS One; 2012; 7(12):e52592. PubMed ID: 23300713 [TBL] [Abstract][Full Text] [Related]
26. In vitro exercise model using contractile human and mouse hybrid myotubes. Chen W; Nyasha MR; Koide M; Tsuchiya M; Suzuki N; Hagiwara Y; Aoki M; Kanzaki M Sci Rep; 2019 Aug; 9(1):11914. PubMed ID: 31417107 [TBL] [Abstract][Full Text] [Related]
27. A novel in vitro model for the assessment of postnatal myonuclear accretion. Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710 [TBL] [Abstract][Full Text] [Related]
28. Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues. Morita K; Morimoto Y; Takeuchi S Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37385238 [TBL] [Abstract][Full Text] [Related]
29. Optimizing the structure and contractility of engineered skeletal muscle thin films. Sun Y; Duffy R; Lee A; Feinberg AW Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372 [TBL] [Abstract][Full Text] [Related]
31. Feeder-supported in vitro exercise model using human satellite cells from patients with sporadic inclusion body myositis. Li Y; Chen W; Ogawa K; Koide M; Takahashi T; Hagiwara Y; Itoi E; Aizawa T; Tsuchiya M; Izumi R; Suzuki N; Aoki M; Kanzaki M Sci Rep; 2022 Jan; 12(1):1082. PubMed ID: 35058512 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes. Manabe Y; Ogino S; Ito M; Furuichi Y; Takagi M; Yamada M; Goto-Inoue N; Ono Y; Fujii NL Anal Biochem; 2016 Mar; 497():36-8. PubMed ID: 26548957 [TBL] [Abstract][Full Text] [Related]
33. Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Nedachi T; Hatakeyama H; Kono T; Sato M; Kanzaki M Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E866-78. PubMed ID: 19622786 [TBL] [Abstract][Full Text] [Related]
34. Pillar electrodes embedded in the skeletal muscle tissue for selective stimulation of biohybrid actuators with increased contractile distance. Li T; Nie M; Morimoto Y; Takeuchi S Biofabrication; 2024 May; 16(3):. PubMed ID: 38744312 [TBL] [Abstract][Full Text] [Related]
35. Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Shimizu K; Sasaki H; Hida H; Fujita H; Obinata K; Shikida M; Nagamori E Biomed Microdevices; 2010 Apr; 12(2):247-52. PubMed ID: 19943113 [TBL] [Abstract][Full Text] [Related]
36. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue. Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672 [TBL] [Abstract][Full Text] [Related]
37. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Malinska D; Kudin AP; Bejtka M; Kunz WS Mitochondrion; 2012 Jan; 12(1):144-8. PubMed ID: 21782978 [TBL] [Abstract][Full Text] [Related]
38. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes. Takayama Y; Wagatsuma A; Hoshino T; Mabuchi K Biotechnol Prog; 2015; 31(1):220-5. PubMed ID: 25311428 [TBL] [Abstract][Full Text] [Related]
39. Nuclear exclusion of forkhead box O and Elk1 and activation of nuclear factor-kappaB are required for C2C12-RasV12C40 myoblast differentiation. De Alvaro C; Nieto-Vazquez I; Rojas JM; Lorenzo M Endocrinology; 2008 Feb; 149(2):793-801. PubMed ID: 17962350 [TBL] [Abstract][Full Text] [Related]
40. Microfluidic devices for construction of contractile skeletal muscle microtissues. Shimizu K; Araki H; Sakata K; Tonomura W; Hashida M; Konishi S J Biosci Bioeng; 2015 Feb; 119(2):212-6. PubMed ID: 25085533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]