BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30277887)

  • 1. Effects of acrylate/acrylamide polymers on the adhesion, growth and differentiation of Muse cells.
    Wang L; Xiao L; Zhang RZ; Qiu LZ; Zhang R; Shi HX
    Biomed Mater; 2018 Oct; 14(1):015003. PubMed ID: 30277887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration.
    Dezawa M
    Cell Transplant; 2016; 25(5):849-61. PubMed ID: 26884346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Muse Cell Discovery, Thanks to Wine and Science.
    Dezawa M
    Adv Exp Med Biol; 2018; 1103():1-11. PubMed ID: 30484221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion and proliferation of human periodontal ligament cells on poly(2-methoxyethyl acrylate).
    Kitakami E; Aoki M; Sato C; Ishihata H; Tanaka M
    Biomed Res Int; 2014; 2014():102648. PubMed ID: 25165689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction.
    Yamauchi T; Yamasaki K; Tsuchiyama K; Koike S; Aiba S
    J Dermatol Sci; 2017 Jun; 86(3):198-205. PubMed ID: 28292562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of thiol-triacrylate polymer via Michael addition reaction for biomedical applications.
    Forghani A; Garber L; Chen C; Tavangarian F; Tighe TB; Devireddy R; Pojman JA; Hayes D
    Biomed Mater; 2018 Oct; 14(1):015001. PubMed ID: 30355851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.
    Heneidi S; Simerman AA; Keller E; Singh P; Li X; Dumesic DA; Chazenbalk G
    PLoS One; 2013; 8(6):e64752. PubMed ID: 23755141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilineage-differentiating stress-enduring (Muse)-like cells exist in synovial tissue.
    Toyoda E; Sato M; Takahashi T; Maehara M; Nakamura Y; Mitani G; Takagaki T; Hamahashi K; Watanabe M
    Regen Ther; 2019 Jun; 10():17-26. PubMed ID: 30525067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts.
    Tsuchiyama K; Wakao S; Kuroda Y; Ogura F; Nojima M; Sawaya N; Yamasaki K; Aiba S; Dezawa M
    J Invest Dermatol; 2013 Oct; 133(10):2425-2435. PubMed ID: 23563197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the protective effect on damaged intestinal epithelial cells of rat multilineage-differentiating stress-enduring (Muse) cells.
    Sun D; Yang L; Cao H; Shen ZY; Song HL
    Cell Biol Int; 2020 Feb; 44(2):549-559. PubMed ID: 31642560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adherence and viability of primary human keratinocytes and primary human dermal fibroblasts on acrylonitrile-based copolymers with different concentrations of positively charged functional groups.
    Trescher K; Scharnagl N; Kratz K; Roch T; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2012; 52(2-4):391-401. PubMed ID: 22975949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotrophic Factor Secretion and Neural Differentiation Potential of Multilineage-differentiating Stress-enduring (Muse) Cells Derived from Mouse Adipose Tissue.
    Nitobe Y; Nagaoki T; Kumagai G; Sasaki A; Liu X; Fujita T; Fukutoku T; Wada K; Tanaka T; Kudo H; Asari T; Furukawa KI; Ishibashi Y
    Cell Transplant; 2019; 28(9-10):1132-1139. PubMed ID: 31304790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts.
    Liu Q; Zhang RZ; Li D; Cheng S; Yang YH; Tian T; Pan XR
    Cell Reprogram; 2016 Apr; 18(2):67-77. PubMed ID: 27055628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A MUSE for Skin Regeneration.
    Hu MS; Longaker MT
    J Invest Dermatol; 2017 Dec; 137(12):2471-2472. PubMed ID: 29169463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes.
    Tian T; Zhang RZ; Yang YH; Liu Q; Li D; Pan XR
    Cell Reprogram; 2017 Apr; 19(2):116-122. PubMed ID: 28170296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mesenchymal stem cells and their interaction with biomaterials: potential applications in tissue engineering].
    Schneider RK; Knüchel R; Neuss S
    Pathologe; 2011 Nov; 32 Suppl 2():296-303. PubMed ID: 21826499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-polymerized microarchitectural constructs prepared by microstereolithography (muSL) using liquid acrylate-end-capped trimethylene carbonate-based prepolymers.
    Kwon IK; Matsuda T
    Biomaterials; 2005 May; 26(14):1675-84. PubMed ID: 15576141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells).
    Cao J; Yang Z; Xiao R; Pan B
    Regen Ther; 2020 Dec; 15():92-96. PubMed ID: 33426206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1.
    Gimeno ML; Fuertes F; Barcala Tabarrozzi AE; Attorressi AI; Cucchiani R; Corrales L; Oliveira TC; Sogayar MC; Labriola L; Dewey RA; Perone MJ
    Stem Cells Transl Med; 2017 Jan; 6(1):161-173. PubMed ID: 28170177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues.
    Wakao S; Akashi H; Kushida Y; Dezawa M
    Pathol Int; 2014 Jan; 64(1):1-9. PubMed ID: 24471964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.