BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30278104)

  • 1. PIP
    Talaga D; Smeralda W; Lescos L; Hunel J; Lepejova-Caudy N; Cullin C; Bonhommeau S; Lecomte S
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15738-15742. PubMed ID: 30278104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Imaging of RNA-Tau Amyloid Fibrils at the Nanoscale Using Tip-Enhanced Raman Spectroscopy.
    Cooney GS; Talaga D; Ury-Thiery V; Fichou Y; Huang Y; Lecomte S; Bonhommeau S
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202314369. PubMed ID: 37905600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway.
    Lipiec E; Perez-Guaita D; Kaderli J; Wood BR; Zenobi R
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8519-8524. PubMed ID: 29749066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Tau Fibrils.
    Talaga D; Cooney GS; Ury-Thiery V; Fichou Y; Huang Y; Lecomte S; Bonhommeau S
    J Phys Chem B; 2022 Jul; 126(27):5024-5032. PubMed ID: 35766112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Far-Off Resonance: Multiwavelength Raman Spectroscopy Probing Amide Bands of Amyloid-β-(37-42) Peptide.
    Talaikis M; Strazdaitė S; Žiaunys M; Niaura G
    Molecules; 2020 Aug; 25(15):. PubMed ID: 32759766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau.
    Flanagan LA; Cunningham CC; Chen J; Prestwich GD; Kosik KS; Janmey PA
    Biophys J; 1997 Sep; 73(3):1440-7. PubMed ID: 9284311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tip-enhanced Raman spectroscopy reveals the structural rearrangements of tau protein aggregates at the growth phase.
    Sofińska K; Seweryn S; Skirlińska-Nosek K; Barbasz J; Lipiec E
    Nanoscale; 2024 Mar; 16(10):5294-5301. PubMed ID: 38372161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ
    Bonhommeau S; Talaga D; Hunel J; Cullin C; Lecomte S
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1771-1774. PubMed ID: 28071842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Tau construct K18 with model lipid membranes.
    Azouz M; Feuillie C; Lafleur M; Molinari M; Lecomte S
    Nanoscale Adv; 2021 Jul; 3(14):4244-4253. PubMed ID: 36132846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.
    Krasnoslobodtsev AV; Deckert-Gaudig T; Zhang Y; Deckert V; Lyubchenko YL
    Ultramicroscopy; 2016 Jun; 165():26-33. PubMed ID: 27060278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer's disease.
    Cornejo A; Aguilar Sandoval F; Caballero L; Machuca L; Muñoz P; Caballero J; Perry G; Ardiles A; Areche C; Melo F
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):945-953. PubMed ID: 28701064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.
    Ramachandran G
    Methods Mol Biol; 2017; 1523():113-128. PubMed ID: 27975247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy.
    vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH
    Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tau aggregation followed by atomic force microscopy and surface plasmon resonance, and single molecule tau-tau interaction probed by atomic force spectroscopy.
    Barrantes A; Sotres J; Hernando-Pérez M; Benítez MJ; de Pablo PJ; Baró AM; Avila J; Jiménez JS
    J Alzheimers Dis; 2009; 18(1):141-51. PubMed ID: 19625749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip-Enhanced Raman Spectroscopy.
    Mrđenović D; Ge W; Kumar N; Zenobi R
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202210288. PubMed ID: 36057139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain.
    Barghorn S; Davies P; Mandelkow E
    Biochemistry; 2004 Feb; 43(6):1694-703. PubMed ID: 14769047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy.
    Sun M; Fang Y; Zhang Z; Xu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020401. PubMed ID: 23496445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules.
    Bonhommeau S; Lecomte S
    Chemphyschem; 2018 Jan; 19(1):8-18. PubMed ID: 29106771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale mapping of newly-synthesised phospholipid molecules in a biological cell using tip-enhanced Raman spectroscopy.
    Kumar N; Drozdz MM; Jiang H; Santos DM; Vaux DJ
    Chem Commun (Camb); 2017 Feb; 53(16):2451-2454. PubMed ID: 28177338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.