These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30278124)

  • 1. Computation of Dynamic Polarizabilities and van der Waals Coefficients from Path-Integral Monte Carlo.
    Tiihonen J; Kylänpää I; Rantala TT
    J Chem Theory Comput; 2018 Nov; 14(11):5750-5763. PubMed ID: 30278124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Van der Waals coefficients beyond the classical shell model.
    Tao J; Fang Y; Hao P; Scuseria GE; Ruzsinszky A; Perdew JP
    J Chem Phys; 2015 Jan; 142(2):024312. PubMed ID: 25591358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate van der Waals coefficients from density functional theory.
    Tao J; Perdew JP; Ruzsinszky A
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):18-21. PubMed ID: 22205765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient calculation of van der Waals dispersion coefficients with time-dependent density functional theory in real time: application to polycyclic aromatic hydrocarbons.
    Marques MA; Castro A; Malloci G; Mulas G; Botti S
    J Chem Phys; 2007 Jul; 127(1):014107. PubMed ID: 17627337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-additivity of polarizabilities and van der Waals C6 coefficients of fullerenes.
    Kauczor J; Norman P; Saidi WA
    J Chem Phys; 2013 Mar; 138(11):114107. PubMed ID: 23534627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating dynamic multipole polarizabilities and van der Waals dispersion coefficients of two-electron systems with a quantum Monte Carlo calculation: A comparison with some ab initio calculations.
    Caffarel M; Rérat M; Pouchan C
    Phys Rev A; 1993 May; 47(5):3704-3717. PubMed ID: 9909375
    [No Abstract]   [Full Text] [Related]  

  • 7. Local decomposition of imaginary polarizabilities and dispersion coefficients.
    Harczuk I; Nagy B; Jensen F; Vahtras O; Ågren H
    Phys Chem Chem Phys; 2017 Aug; 19(30):20241-20250. PubMed ID: 28726873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of dispersion forces with quantum Monte Carlo: toward a continuum model for solvation.
    Amovilli C; Floris FM
    J Phys Chem A; 2015 May; 119(21):5327-34. PubMed ID: 25535856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path integral Monte Carlo approach for weakly bound van der Waals complexes with rotations: algorithm and benchmark calculations.
    Blinov N; Song X; Roy PN
    J Chem Phys; 2004 Apr; 120(13):5916-31. PubMed ID: 15267473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability.
    Tao J; Rappe AM
    J Chem Phys; 2016 Jan; 144(3):031102. PubMed ID: 26801013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation.
    Sato T; Nakai H
    J Chem Phys; 2009 Dec; 131(22):224104. PubMed ID: 20001021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static field-gradient polarizabilities of small atoms and molecules at finite temperature.
    Tiihonen J; Kylänpää I; Rantala TT
    J Chem Phys; 2017 Nov; 147(20):204101. PubMed ID: 29195290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational dependence of the H2-H2 C6 dispersion coefficients.
    Hinde RJ
    J Chem Phys; 2005 Apr; 122(14):144304. PubMed ID: 15847519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclusters.
    Perdew JP; Tao J; Hao P; Ruzsinszky A; Csonka GI; Pitarke JM
    J Phys Condens Matter; 2012 Oct; 24(42):424207. PubMed ID: 23032569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations.
    Boninsegni M; Prokof'ev NV; Svistunov BV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036701. PubMed ID: 17025780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex polarization propagator method for calculation of dispersion coefficients of extended pi-conjugated systems: the C6 coefficients of polyacenes and C60.
    Jiemchooroj A; Norman P; Sernelius BE
    J Chem Phys; 2005 Sep; 123(12):124312. PubMed ID: 16392487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the D3 dispersion coefficient model.
    Caldeweyher E; Bannwarth C; Grimme S
    J Chem Phys; 2017 Jul; 147(3):034112. PubMed ID: 28734285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of atomic and ionized hydrogen: analytical results versus equation-of-state tables and Monte Carlo data.
    Alastuey A; Ballenegger V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066402. PubMed ID: 23368054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent density functional theory calculation of van der Waals coefficient of sodium clusters.
    Banerjee A; Chakrabarti A; Ghanty TK
    J Chem Phys; 2007 Oct; 127(13):134103. PubMed ID: 17919007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Van der Waals interactions: evaluations by use of a statistical mechanical method.
    Høye JS
    J Chem Phys; 2011 Oct; 135(13):134102. PubMed ID: 21992277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.