These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30278156)

  • 1. Regulation of cardiac calcium by mechanotransduction: Role of mitochondria.
    Kim JC; Son MJ; Woo SH
    Arch Biochem Biophys; 2018 Dec; 659():33-41. PubMed ID: 30278156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cardiac Ca
    Kim JC; Son MJ; Wang J; Woo SH
    Arch Pharm Res; 2017 Jul; 40(7):783-795. PubMed ID: 28702845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts.
    Liao XD; Wang XH; Jin HJ; Chen LY; Chen Q
    Cell Res; 2004 Feb; 14(1):16-26. PubMed ID: 15040886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart.
    Lai L; Qiu H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33080805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria.
    Belmonte S; Morad M
    J Physiol; 2008 Mar; 586(5):1379-97. PubMed ID: 18187469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting calcium and the mitochondria in prevention of pathology in the heart.
    Viola HM; Hool LC
    Curr Drug Targets; 2011 May; 12(5):748-60. PubMed ID: 21291390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of mitochondrial Ca
    Cao JL; Adaniya SM; Cypress MW; Suzuki Y; Kusakari Y; Jhun BS; O-Uchi J
    Arch Biochem Biophys; 2019 Mar; 663():276-287. PubMed ID: 30684463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial calcium uniporter in the heart: energetics and beyond.
    Kwong JQ
    J Physiol; 2017 Jun; 595(12):3743-3751. PubMed ID: 27991671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing.
    Yeh CH; Chou YJ; Kao CH; Tsai TF
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33287440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease.
    Jiang M; Xie X; Cao F; Wang Y
    Front Cardiovasc Med; 2021; 8():789267. PubMed ID: 34957264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways.
    Jung C; Martins AS; Niggli E; Shirokova N
    Cardiovasc Res; 2008 Mar; 77(4):766-73. PubMed ID: 18056762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Na⁺ and cardiac metabolism.
    Bay J; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2013 Aug; 61():20-7. PubMed ID: 23727097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes.
    Shyu KG
    Clin Sci (Lond); 2009 Mar; 116(5):377-89. PubMed ID: 19175356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria in Structural and Functional Cardiac Remodeling.
    Torrealba N; Aranguiz P; Alonso C; Rothermel BA; Lavandero S
    Adv Exp Med Biol; 2017; 982():277-306. PubMed ID: 28551793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria and Cardiac Hypertrophy.
    Facundo HDTF; Brainard RE; Caldas FRL; Lucas AMB
    Adv Exp Med Biol; 2017; 982():203-226. PubMed ID: 28551789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Through modulation of cardiac Ca
    Larbig R; Reda S; Paar V; Trost A; Leitner J; Weichselbaumer S; Motloch KA; Wernly B; Arrer A; Strauss B; Lichtenauer M; Reitsamer HA; Eckardt L; Seebohm G; Hoppe UC; Motloch LJ
    Exp Physiol; 2017 Jun; 102(6):650-662. PubMed ID: 28370799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart.
    Rasmussen TP; Wu Y; Joiner ML; Koval OM; Wilson NR; Luczak ED; Wang Q; Chen B; Gao Z; Zhu Z; Wagner BA; Soto J; McCormick ML; Kutschke W; Weiss RM; Yu L; Boudreau RL; Abel ED; Zhan F; Spitz DR; Buettner GR; Song LS; Zingman LV; Anderson ME
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9129-34. PubMed ID: 26153425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanosensitivity of microdomain calcium signalling in the heart.
    Schönleitner P; Schotten U; Antoons G
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):288-301. PubMed ID: 28648626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.