These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30278648)
1. Transition to chaos in wave memory dynamics in a harmonic well: Deterministic and noise-driven behavior. Perrard S; Labousse M Chaos; 2018 Sep; 28(9):096109. PubMed ID: 30278648 [TBL] [Abstract][Full Text] [Related]
2. Chaos driven by interfering memory. Perrard S; Labousse M; Fort E; Couder Y Phys Rev Lett; 2014 Sep; 113(10):104101. PubMed ID: 25238360 [TBL] [Abstract][Full Text] [Related]
3. Walking droplets in a circular corral: Quantisation and chaos. Cristea-Platon T; Sáenz PJ; Bush JWM Chaos; 2018 Sep; 28(9):096116. PubMed ID: 30278624 [TBL] [Abstract][Full Text] [Related]
4. Interaction of two walkers: Perturbed vertical dynamics as a source of chaos. Tadrist L; Sampara N; Schlagheck P; Gilet T Chaos; 2018 Sep; 28(9):096113. PubMed ID: 30278650 [TBL] [Abstract][Full Text] [Related]
5. Improvement and empirical research on chaos control by theory of "chaos + chaos = order". Fulai W Chaos; 2012 Dec; 22(4):043145. PubMed ID: 23278080 [TBL] [Abstract][Full Text] [Related]
6. Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets. Durey M; Milewski PA; Bush JWM Chaos; 2018 Sep; 28(9):096108. PubMed ID: 30278646 [TBL] [Abstract][Full Text] [Related]
7. Rate processes in nonlinear optical dynamics with many attractors. Arecchi FT Chaos; 1991 Oct; 1(3):357-372. PubMed ID: 12779933 [TBL] [Abstract][Full Text] [Related]
8. Fractal snapshot components in chaos induced by strong noise. Bódai T; Károlyi G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264 [TBL] [Abstract][Full Text] [Related]
9. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
10. Strong-chaos-caused negative mobility in a periodic substrate potential. Luo Y; Zeng C; Ai BQ Phys Rev E; 2020 Oct; 102(4-1):042114. PubMed ID: 33212680 [TBL] [Abstract][Full Text] [Related]
11. Dynamics and statistics of wave-particle interactions in a confined geometry. Gilet T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052917. PubMed ID: 25493868 [TBL] [Abstract][Full Text] [Related]
12. Exploring orbital dynamics and trapping with a generalized pilot-wave framework. Tambasco LD; Bush JWM Chaos; 2018 Sep; 28(9):096115. PubMed ID: 30278641 [TBL] [Abstract][Full Text] [Related]
13. Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas. Banerjee S; Misra AP; Shukla PK; Rondoni L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046405. PubMed ID: 20481845 [TBL] [Abstract][Full Text] [Related]
14. Experimental study of the transitions between synchronous chaos and a periodic rotating wave. Sánchez E; Pazó D; Matías MA Chaos; 2006 Sep; 16(3):033122. PubMed ID: 17014227 [TBL] [Abstract][Full Text] [Related]
15. Experimental investigation of walking drops: Wave field and interaction with slit structures. Ellegaard C; Levinsen MT Phys Rev E; 2024 Mar; 109(3-2):035101. PubMed ID: 38632787 [TBL] [Abstract][Full Text] [Related]
16. Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Gilet T Phys Rev E; 2016 Apr; 93():042202. PubMed ID: 27176288 [TBL] [Abstract][Full Text] [Related]
17. The onset of chaos in orbital pilot-wave dynamics. Tambasco LD; Harris DM; Oza AU; Rosales RR; Bush JW Chaos; 2016 Oct; 26(10):103107. PubMed ID: 27802677 [TBL] [Abstract][Full Text] [Related]
18. Bright matter-wave soliton collisions in a harmonic trap: regular and chaotic dynamics. Martin AD; Adams CS; Gardiner SA Phys Rev Lett; 2007 Jan; 98(2):020402. PubMed ID: 17358586 [TBL] [Abstract][Full Text] [Related]
19. Constructive effects of noise in homoclinic chaotic systems. Zhou CS; Kurths J; Allaria E; Boccaletti S; Meucci R; Arecchi FT Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066220. PubMed ID: 16241339 [TBL] [Abstract][Full Text] [Related]
20. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]