These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30278662)
1. Highly excited vibrational levels of methane up to 10 300 cm Nikitin AV; Protasevich AE; Rey M; Tyuterev VG J Chem Phys; 2018 Sep; 149(12):124305. PubMed ID: 30278662 [TBL] [Abstract][Full Text] [Related]
2. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation. Mátyus E; Czakó G; Sutcliffe BT; Császár AG J Chem Phys; 2007 Aug; 127(8):084102. PubMed ID: 17764224 [TBL] [Abstract][Full Text] [Related]
3. Variational calculation of highly excited rovibrational energy levels of H2O2. Polyansky OL; Kozin IN; Ovsyannikov RI; Małyszek P; Koput J; Tennyson J; Yurchenko SN J Phys Chem A; 2013 Aug; 117(32):7367-77. PubMed ID: 23611762 [TBL] [Abstract][Full Text] [Related]
4. Aspects of the Eckart frame ro-vibrational kinetic energy operator. Szalay V J Chem Phys; 2015 Aug; 143(6):064104. PubMed ID: 26277124 [TBL] [Abstract][Full Text] [Related]
5. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame. Yachmenev A; Yurchenko SN J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463 [TBL] [Abstract][Full Text] [Related]
6. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes. Krasnoshchekov SV; Schutski RS; Craig NC; Sibaev M; Crittenden DL J Chem Phys; 2018 Feb; 148(8):084102. PubMed ID: 29495771 [TBL] [Abstract][Full Text] [Related]
7. The fourth age of quantum chemistry: molecules in motion. Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300 [TBL] [Abstract][Full Text] [Related]
8. Vibrational Coupled Cluster Computations in Polyspherical Coordinates with the Exact Analytical Kinetic Energy Operator. Klinting EL; Lauvergnat D; Christiansen O J Chem Theory Comput; 2020 Jul; 16(7):4505-4520. PubMed ID: 32422041 [TBL] [Abstract][Full Text] [Related]
9. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator. Szalay V J Chem Phys; 2015 May; 142(17):174107. PubMed ID: 25956090 [TBL] [Abstract][Full Text] [Related]
10. Ab initio variational predictions for understanding highly congested spectra: rovibrational assignment of 108 new methane sub-bands in the icosad range (6280-7800 cm(-1)). Rey M; Nikitin AV; Campargue A; Kassi S; Mondelain D; Tyuterev VG Phys Chem Chem Phys; 2016 Jan; 18(1):176-89. PubMed ID: 26602633 [TBL] [Abstract][Full Text] [Related]
11. Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame. Wang XG; Carrington T J Chem Phys; 2013 Mar; 138(10):104106. PubMed ID: 23514464 [TBL] [Abstract][Full Text] [Related]
12. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia. Fábri C; Mátyus E; Császár AG Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():84-9. PubMed ID: 23702049 [TBL] [Abstract][Full Text] [Related]
13. A hybrid variational-perturbation calculation of the ro-vibrational spectrum of nitric acid. Pavlyuchko AI; Yurchenko SN; Tennyson J J Chem Phys; 2015 Mar; 142(9):094309. PubMed ID: 25747083 [TBL] [Abstract][Full Text] [Related]
14. On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules. Zúñiga J; Picón JA; Bastida A; Requena A J Chem Phys; 2005 Jun; 122(22):224319. PubMed ID: 15974680 [TBL] [Abstract][Full Text] [Related]
15. Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice. Szalay V J Chem Phys; 2017 Mar; 146(12):124107. PubMed ID: 28388108 [TBL] [Abstract][Full Text] [Related]
16. Vibrational Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy. Vázquez J; Harding ME; Stanton JF; Gauss J J Chem Theory Comput; 2011 May; 7(5):1428-42. PubMed ID: 26610133 [TBL] [Abstract][Full Text] [Related]
17. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels. Delahaye T; Nikitin A; Rey M; Szalay PG; Tyuterev VG J Chem Phys; 2014 Sep; 141(10):104301. PubMed ID: 25217910 [TBL] [Abstract][Full Text] [Related]
18. Vibrational energy levels of difluorodioxirane computed with variational and perturbative methods from a hybrid force field. Ramakrishnan R; Carrington T Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():107-12. PubMed ID: 23290829 [TBL] [Abstract][Full Text] [Related]
19. A general nuclear motion Hamiltonian and non-internal curvilinear coordinates. Strobusch D; Scheurer Ch J Chem Phys; 2013 Mar; 138(9):094107. PubMed ID: 23485277 [TBL] [Abstract][Full Text] [Related]
20. Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations. Rey M; Nikitin AV; Tyuterev VG J Chem Phys; 2014 Jul; 141(4):044316. PubMed ID: 25084919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]