BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 30279002)

  • 1. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities.
    Halilaj E; Rajagopal A; Fiterau M; Hicks JL; Hastie TJ; Delp SL
    J Biomech; 2018 Nov; 81():1-11. PubMed ID: 30279002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review.
    Wei S; Wu Z
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility.
    Ku JP; Hicks JL; Hastie T; Leskovec J; Ré C; Delp SL
    J Am Med Inform Assoc; 2015 Nov; 22(6):1120-5. PubMed ID: 26272077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explainable AI Elucidates Musculoskeletal Biomechanics: A Case Study Using Wrist Surgeries.
    Tappan I; Lindbeck EM; Nichols JA; Harley JB
    Ann Biomed Eng; 2024 Mar; 52(3):498-509. PubMed ID: 37943340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance.
    Cust EE; Sweeting AJ; Ball K; Robertson S
    J Sports Sci; 2019 Mar; 37(5):568-600. PubMed ID: 30307362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review of data mining and machine learning for air pollution epidemiology.
    Bellinger C; Mohomed Jabbar MS; Zaïane O; Osornio-Vargas A
    BMC Public Health; 2017 Nov; 17(1):907. PubMed ID: 29179711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of machine learning in gait analysis: a review.
    Khera P; Kumar N
    J Med Eng Technol; 2020 Nov; 44(8):441-467. PubMed ID: 33078988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspective on "in the wild" movement analysis using machine learning.
    Dorschky E; Camomilla V; Davis J; Federolf P; Reenalda J; Koelewijn AD
    Hum Mov Sci; 2023 Feb; 87():103042. PubMed ID: 36493569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Ground Reaction Forces from Two-Dimensional Pose Data: A Biomechanics-Based Comparison of AlphaPose, BlazePose, and OpenPose.
    Mundt M; Born Z; Goldacre M; Alderson J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning approaches to analysing textual injury surveillance data: a systematic review.
    Vallmuur K
    Accid Anal Prev; 2015 Jun; 79():41-9. PubMed ID: 25795924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is movement variability important for sports biomechanists?
    Bartlett R; Wheat J; Robins M
    Sports Biomech; 2007 May; 6(2):224-43. PubMed ID: 17892098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.
    Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S
    Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
    Eddy K; Jordan Z; Stephenson M
    JBI Database System Rev Implement Rep; 2016 Apr; 14(4):96-137. PubMed ID: 27532314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports.
    Weiss K; Whatman C
    Sports Med; 2015 Sep; 45(9):1325-1337. PubMed ID: 26130304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait biomechanics in the era of data science.
    Ferber R; Osis ST; Hicks JL; Delp SL
    J Biomech; 2016 Dec; 49(16):3759-3761. PubMed ID: 27814971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond.
    Arzani A; Wang JX; Sacks MS; Shadden SC
    Ann Biomed Eng; 2022 Jun; 50(6):615-627. PubMed ID: 35445297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning approach to predict early outcomes after pituitary adenoma surgery.
    Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE
    Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning algorithms for predicting scapular kinematics.
    Nicholson KF; Richardson RT; van Roden EAR; Quinton RG; Anzilotti KF; Richards JG
    Med Eng Phys; 2019 Mar; 65():39-45. PubMed ID: 30733173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms.
    Vu CC; Kim J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.
    MacKinnon K; Marcellus L; Rivers J; Gordon C; Ryan M; Butcher D
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):14-26. PubMed ID: 26447004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.