BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 30279002)

  • 21. What is Machine Learning? A Primer for the Epidemiologist.
    Bi Q; Goodman KE; Kaminsky J; Lessler J
    Am J Epidemiol; 2019 Dec; 188(12):2222-2239. PubMed ID: 31509183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Wearable Sensors and Machine Learning Models to Separate Functional Upper Extremity Use From Walking-Associated Arm Movements.
    McLeod A; Bochniewicz EM; Lum PS; Holley RJ; Emmer G; Dromerick AW
    Arch Phys Med Rehabil; 2016 Feb; 97(2):224-31. PubMed ID: 26435302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach.
    Kobsar D; Ferber R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning methods to support personalized neuromusculoskeletal modelling.
    Saxby DJ; Killen BA; Pizzolato C; Carty CP; Diamond LE; Modenese L; Fernandez J; Davico G; Barzan M; Lenton G; da Luz SB; Suwarganda E; Devaprakash D; Korhonen RK; Alderson JA; Besier TF; Barrett RS; Lloyd DG
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1169-1185. PubMed ID: 32676934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Activity Recognition from Body Sensor Data using Deep Learning.
    Hassan MM; Huda S; Uddin MZ; Almogren A; Alrubaian M
    J Med Syst; 2018 Apr; 42(6):99. PubMed ID: 29663090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanics: an integral part of sport science and sport medicine.
    Elliott B
    J Sci Med Sport; 1999 Dec; 2(4):299-310. PubMed ID: 10710008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.
    Bochniewicz EM; Emmer G; McLeod A; Barth J; Dromerick AW; Lum P
    J Stroke Cerebrovasc Dis; 2017 Dec; 26(12):2880-2887. PubMed ID: 28781056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing cricket batting skill: implications for biomechanics and skill acquisition research and practice.
    Portus MR; Farrow D
    Sports Biomech; 2011 Nov; 10(4):294-305. PubMed ID: 22303782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.
    Luo W; Phung D; Tran T; Gupta S; Rana S; Karmakar C; Shilton A; Yearwood J; Dimitrova N; Ho TB; Venkatesh S; Berk M
    J Med Internet Res; 2016 Dec; 18(12):e323. PubMed ID: 27986644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning Methodology in a System Applying the Adaptive Strategy for Teaching Human Motions.
    Wójcik K; Piekarczyk M
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cricket fast bowling detection in a training setting using an inertial measurement unit and machine learning.
    McGrath JW; Neville J; Stewart T; Cronin J
    J Sports Sci; 2019 Jun; 37(11):1220-1226. PubMed ID: 30543315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.
    Zhang L; Tan J; Han D; Zhu H
    Drug Discov Today; 2017 Nov; 22(11):1680-1685. PubMed ID: 28881183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
    Sinclair P; Kable A; Levett-Jones T
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):52-64. PubMed ID: 26447007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors.
    Ejupi A; Menon C
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30065177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of machine learning in paediatric nutrition.
    Young A; Johnson MJ; Beattie RM
    Curr Opin Clin Nutr Metab Care; 2024 May; 27(3):290-296. PubMed ID: 38294876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nurses "Seeing Forest for the Trees" in the Age of Machine Learning: Using Nursing Knowledge to Improve Relevance and Performance.
    Kwon JY; Karim ME; Topaz M; Currie LM
    Comput Inform Nurs; 2019 Apr; 37(4):203-212. PubMed ID: 30688670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of sepsis patients using machine learning approach: A meta-analysis.
    Islam MM; Nasrin T; Walther BA; Wu CC; Yang HC; Li YC
    Comput Methods Programs Biomed; 2019 Mar; 170():1-9. PubMed ID: 30712598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Next-Generation Machine Learning for Biological Networks.
    Camacho DM; Collins KM; Powers RK; Costello JC; Collins JJ
    Cell; 2018 Jun; 173(7):1581-1592. PubMed ID: 29887378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.