BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30279094)

  • 1. Characterization of a novel regulatory pathway for mannitol metabolism and its coordination with biofilm formation in Mycobacterium smegmatis.
    Hu J; Zhang H; Zhou S; Li W; He ZG
    J Genet Genomics; 2018 Sep; 45(9):477-488. PubMed ID: 30279094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 3. Aggregation of Nontuberculous Mycobacteria Is Regulated by Carbon-Nitrogen Balance.
    DePas WH; Bergkessel M; Newman DK
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A universal stress protein in
    Samanta S; Biswas P; Banerjee A; Bose A; Siddiqui N; Nambi S; Saini DK; Visweswariah SS
    J Biol Chem; 2020 Feb; 295(6):1500-1516. PubMed ID: 31882539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MmbR, a master transcription regulator that controls fatty acid β-oxidation genes in Mycolicibacterium smegmatis.
    Xu H; Su Z; Li W; Deng Y; He ZG
    Environ Microbiol; 2021 Feb; 23(2):1096-1114. PubMed ID: 32985741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis.
    Pacheco SA; Hsu FF; Powers KM; Purdy GE
    J Biol Chem; 2013 Aug; 288(33):24213-22. PubMed ID: 23836904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly-L-glutamate/glutamine synthesis in the cell wall of Mycobacterium bovis is regulated in response to nitrogen availability.
    Tripathi D; Chandra H; Bhatnagar R
    BMC Microbiol; 2013 Oct; 13():226. PubMed ID: 24112767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis.
    Gebhard S; Busby JN; Fritz G; Moreland NJ; Cook GM; Lott JS; Baker EN; Money VA
    J Bacteriol; 2014 Oct; 196(19):3472-81. PubMed ID: 25049090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Growth, Cell Shape, Cell Division, and Gene Expression by Second Messengers (p)ppGpp and Cyclic Di-GMP in Mycobacterium smegmatis.
    Gupta KR; Baloni P; Indi SS; Chatterji D
    J Bacteriol; 2016 May; 198(9):1414-22. PubMed ID: 26903417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AraR, an L-Arabinose-Responding Transcription Factor, Negatively Regulates Resistance of Mycobacterium smegmatis to Isoniazid.
    Zhou L; He ZG; Li W
    Biochemistry (Mosc); 2019 May; 84(5):540-552. PubMed ID: 31234768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis.
    Recht J; Kolter R
    J Bacteriol; 2001 Oct; 183(19):5718-24. PubMed ID: 11544235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of CwlM on autolysis and biofilm formation in Mycobacterium tuberculosis and Mycobacterium smegmatis.
    Wang C; Zhang Q; Tang X; An Y; Li S; Xu H; Li Y; Wang X; Luan W; Wang Y; Liu M; Yu L
    Int J Med Microbiol; 2019 Jan; 309(1):73-83. PubMed ID: 30563740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-Xylose Blocks the Broad Negative Regulation of XylR on Lipid Metabolism and Affects Multiple Physiological Characteristics in Mycobacteria.
    Wang K; Cui X; Ling X; Chen J; Zheng J; Xiang Y; Li W
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aceE involves in mycolic acid synthesis and biofilm formation in Mycobacterium smegmatis.
    Chen S; Teng T; Wen S; Zhang T; Huang H
    BMC Microbiol; 2020 Aug; 20(1):259. PubMed ID: 32811434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis.
    Chen JM; German GJ; Alexander DC; Ren H; Tan T; Liu J
    J Bacteriol; 2006 Jan; 188(2):633-41. PubMed ID: 16385053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes.
    Attila C; Ueda A; Wood TK
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):293-307. PubMed ID: 18157527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhoPR Positively Regulates
    Feng L; Chen S; Hu Y
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AraC-Type Regulator Rbf Controls the Staphylococcus epidermidis Biofilm Phenotype by Negatively Regulating the icaADBC Repressor SarR.
    Rowe SE; Campbell C; Lowry C; O'Donnell ST; Olson ME; Lindgren JK; Waters EM; Fey PD; O'Gara JP
    J Bacteriol; 2016 Nov; 198(21):2914-2924. PubMed ID: 27501984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis.
    Padhi A; Naik SK; Sengupta S; Ganguli G; Sonawane A
    Microbes Infect; 2016 Apr; 18(4):224-36. PubMed ID: 26706821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis.
    Zhang H; Gao L; Zhang J; Li W; Yang M; Zhang H; Gao C; He ZG
    PLoS One; 2014; 9(8):e106016. PubMed ID: 25153492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.