BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30279144)

  • 1. SIRT5 deacylates metabolism-related proteins and attenuates hepatic steatosis in ob/ob mice.
    Du Y; Hu H; Qu S; Wang J; Hua C; Zhang J; Wei P; He X; Hao J; Liu P; Yang F; Li T; Wei T
    EBioMedicine; 2018 Oct; 36():347-357. PubMed ID: 30279144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target.
    Nishida Y; Rardin MJ; Carrico C; He W; Sahu AK; Gut P; Najjar R; Fitch M; Hellerstein M; Gibson BW; Verdin E
    Mol Cell; 2015 Jul; 59(2):321-32. PubMed ID: 26073543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function.
    Sadhukhan S; Liu X; Ryu D; Nelson OD; Stupinski JA; Li Z; Chen W; Zhang S; Weiss RS; Locasale JW; Auwerx J; Lin H
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4320-5. PubMed ID: 27051063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein hypoacylation induced by Sirt5 overexpression has minimal metabolic effect in mice.
    Bentley NL; Fiveash CE; Osborne B; Quek LE; Ogura M; Inagaki N; Cooney GJ; Polly P; Montgomery MK; Turner N
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1349-1355. PubMed ID: 30017194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation.
    Hirschey MD; Zhao Y
    Mol Cell Proteomics; 2015 Sep; 14(9):2308-15. PubMed ID: 25717114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology.
    Kumar S; Lombard DB
    Crit Rev Biochem Mol Biol; 2018 Jun; 53(3):311-334. PubMed ID: 29637793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications.
    Carrico C; Meyer JG; He W; Gibson BW; Verdin E
    Cell Metab; 2018 Mar; 27(3):497-512. PubMed ID: 29514063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirtuin 5-Mediated Lysine Desuccinylation Protects Mitochondrial Metabolism Following Subarachnoid Hemorrhage in Mice.
    Xiao ZP; Lv T; Hou PP; Manaenko A; Liu Y; Jin Y; Gao L; Jia F; Tian Y; Li P; Zhang JH; Hu Q; Zhang X
    Stroke; 2021 Dec; 52(12):4043-4053. PubMed ID: 34807744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury.
    Boylston JA; Sun J; Chen Y; Gucek M; Sack MN; Murphy E
    J Mol Cell Cardiol; 2015 Nov; 88():73-81. PubMed ID: 26388266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of mitochondrial sirtuins in health and disease.
    Osborne B; Bentley NL; Montgomery MK; Turner N
    Free Radic Biol Med; 2016 Nov; 100():164-174. PubMed ID: 27164052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirt5 Deficiency Causes Posttranslational Protein Malonylation and Dysregulated Cellular Metabolism in Chondrocytes Under Obesity Conditions.
    Zhu S; Batushansky A; Jopkiewicz A; Makosa D; Humphries KM; Van Remmen H; Griffin TM
    Cartilage; 2021 Dec; 13(2_suppl):1185S-1199S. PubMed ID: 33567897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells.
    Chen Y
    Methods Mol Biol; 2016; 1410():23-37. PubMed ID: 26867736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease.
    Baek J; Sas K; He C; Nair V; Giblin W; Inoki A; Zhang H; Yingbao Y; Hodgin J; Nelson RG; Brosius FC; Kretzler M; Stemmer PM; Lombard DB; Pennathur S
    J Biol Chem; 2023 Mar; 299(3):102960. PubMed ID: 36736426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic characterization of a Sirt5 deficient mouse model.
    Yu J; Sadhukhan S; Noriega LG; Moullan N; He B; Weiss RS; Lin H; Schoonjans K; Auwerx J
    Sci Rep; 2013 Sep; 3():2806. PubMed ID: 24076663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation of
    Hershberger KA; Abraham DM; Liu J; Locasale JW; Grimsrud PA; Hirschey MD
    J Biol Chem; 2018 Jul; 293(27):10630-10645. PubMed ID: 29769314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new view on functions of the lysine demalonylase activity of SIRT5.
    Nahálková J
    Life Sci; 2023 May; 320():121572. PubMed ID: 36921688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis.
    Ma Y; Qi Y; Wang L; Zheng Z; Zhang Y; Zheng J
    Free Radic Biol Med; 2019 Apr; 134():458-467. PubMed ID: 30703481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain.
    Zhang Y; Bharathi SS; Rardin MJ; Lu J; Maringer KV; Sims-Lucas S; Prochownik EV; Gibson BW; Goetzman ES
    J Biol Chem; 2017 Jun; 292(24):10239-10249. PubMed ID: 28458255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol metabolism modifies hepatic protein acylation in mice.
    Fritz KS; Green MF; Petersen DR; Hirschey MD
    PLoS One; 2013; 8(9):e75868. PubMed ID: 24073283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.