These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 30279161)
21. Melanocortin receptor-4 mediates the anorectic effect induced by the nucleus tractus solitarius injection of glucagon-like Peptide-2 in fasted rats. Sun H; Meng K; Hou L; Shang L; Yan J Eur J Pharmacol; 2021 Jun; 901():174072. PubMed ID: 33823184 [TBL] [Abstract][Full Text] [Related]
22. Divergent leptin signaling in proglucagon neurons of the nucleus of the solitary tract in mice and rats. Huo L; Gamber KM; Grill HJ; Bjørbaek C Endocrinology; 2008 Feb; 149(2):492-7. PubMed ID: 17974623 [TBL] [Abstract][Full Text] [Related]
23. Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Dorsal Tegmental Nucleus Regulates Energy Balance. Reiner DJ; Leon RM; McGrath LE; Koch-Laskowski K; Hahn JD; Kanoski SE; Mietlicki-Baase EG; Hayes MR Neuropsychopharmacology; 2018 Feb; 43(3):627-637. PubMed ID: 28920591 [TBL] [Abstract][Full Text] [Related]
24. Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats. Kreisler AD; Rinaman L Am J Physiol Regul Integr Comp Physiol; 2016 May; 310(10):R906-16. PubMed ID: 26936779 [TBL] [Abstract][Full Text] [Related]
25. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. Barrera JG; Jones KR; Herman JP; D'Alessio DA; Woods SC; Seeley RJ J Neurosci; 2011 Mar; 31(10):3904-13. PubMed ID: 21389245 [TBL] [Abstract][Full Text] [Related]
26. A High-Fat Diet Increases Activation of the Glucagon-Like Peptide-1-Producing Neurons in the Nucleus Tractus Solitarii: an Effect that is Partially Reversed by Drugs Normalizing Glycemia. Lietzau G; Ntika S; Pintana H; Tracy L; Klein T; Nyström T; Darsalia V; Patrone C; Krizhanovskii C Cell Mol Neurobiol; 2022 Aug; 42(6):1995-2002. PubMed ID: 33811589 [TBL] [Abstract][Full Text] [Related]
27. Endogenous glucagon-like peptide-1 reduces drinking behavior and is differentially engaged by water and food intakes in rats. McKay NJ; Galante DL; Daniels D J Neurosci; 2014 Dec; 34(49):16417-23. PubMed ID: 25471579 [TBL] [Abstract][Full Text] [Related]
28. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons. Katsurada K; Maejima Y; Nakata M; Kodaira M; Suyama S; Iwasaki Y; Kario K; Yada T Biochem Biophys Res Commun; 2014 Aug; 451(2):276-81. PubMed ID: 25089000 [TBL] [Abstract][Full Text] [Related]
29. Loss of cholecystokinin and glucagon-like peptide-1-induced satiation in mice lacking serotonin 2C receptors. Asarian L Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R51-6. PubMed ID: 19005016 [TBL] [Abstract][Full Text] [Related]
30. Synaptic Inputs to the Mouse Dorsal Vagal Complex and Its Resident Preproglucagon Neurons. Holt MK; Pomeranz LE; Beier KT; Reimann F; Gribble FM; Rinaman L J Neurosci; 2019 Dec; 39(49):9767-9781. PubMed ID: 31666353 [TBL] [Abstract][Full Text] [Related]
31. The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Trapp S; Richards JE Curr Opin Pharmacol; 2013 Dec; 13(6):964-9. PubMed ID: 24075717 [TBL] [Abstract][Full Text] [Related]
33. Behavioural and neurochemical mechanisms underpinning the feeding-suppressive effect of GLP-1/CCK combinatorial therapy. Roth E; Benoit S; Quentin B; Lam B; Will S; Ma M; Heeley N; Darwish T; Shrestha Y; Gribble F; Reimann F; Pshenichnaya I; Yeo G; Baker DJ; Trevaskis JL; Blouet C Mol Metab; 2021 Jan; 43():101118. PubMed ID: 33221554 [TBL] [Abstract][Full Text] [Related]
34. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats. Maniscalco JW; Zheng H; Gordon PJ; Rinaman L J Neurosci; 2015 Jul; 35(30):10701-14. PubMed ID: 26224855 [TBL] [Abstract][Full Text] [Related]
35. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Singh I; Wang L; Xia B; Liu J; Tahiri A; El Ouaamari A; Wheeler MB; Pang ZP Cell Biosci; 2022 Oct; 12(1):178. PubMed ID: 36309763 [TBL] [Abstract][Full Text] [Related]
36. [Food intake-suppressing action of incretin and anti-obesity therapy]. Nakagawa A; Nishizawa M; Koya D Nihon Rinsho; 2011 May; 69(5):826-30. PubMed ID: 21595266 [TBL] [Abstract][Full Text] [Related]
37. The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Grill HJ; Hayes MR Int J Obes (Lond); 2009 Apr; 33 Suppl 1():S11-5. PubMed ID: 19363500 [TBL] [Abstract][Full Text] [Related]
38. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist. Katsurada K; Yada T J Diabetes Investig; 2016 Apr; 7 Suppl 1(Suppl 1):64-9. PubMed ID: 27186358 [TBL] [Abstract][Full Text] [Related]
39. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Baggio LL; Huang Q; Brown TJ; Drucker DJ Gastroenterology; 2004 Aug; 127(2):546-58. PubMed ID: 15300587 [TBL] [Abstract][Full Text] [Related]