These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 30279528)
1. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus. Mouammine A; Eich K; Frandi A; Collier J Sci Rep; 2018 Oct; 8(1):14677. PubMed ID: 30279528 [TBL] [Abstract][Full Text] [Related]
2. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. Keuntje B; Masepohl B; Klipp W J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417 [TBL] [Abstract][Full Text] [Related]
3. Proline utilization system is required for infection by the pathogenic α-proteobacterium Brucella abortus. Caudill MT; Budnick JA; Sheehan LM; Lehman CR; Purwantini E; Mukhopadhyay B; Caswell CC Microbiology (Reading); 2017 Jul; 163(7):970-979. PubMed ID: 28691659 [TBL] [Abstract][Full Text] [Related]
4. An Lrp-type transcriptional regulator from Agrobacterium tumefaciens condenses more than 100 nucleotides of DNA into globular nucleoprotein complexes. Jafri S; Evoy S; Cho K; Craighead HG; Winans SC J Mol Biol; 1999 May; 288(5):811-24. PubMed ID: 10329181 [TBL] [Abstract][Full Text] [Related]
5. The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated. Cho K; Winans SC Mol Microbiol; 1996 Dec; 22(5):1025-33. PubMed ID: 8971722 [TBL] [Abstract][Full Text] [Related]
6. Sinorhizobium meliloti putA gene regulation: a new model within the family Rhizobiaceae. Soto MJ; Jiménez-Zurdo JI; van Dillewijn P; Toro N J Bacteriol; 2000 Apr; 182(7):1935-41. PubMed ID: 10715000 [TBL] [Abstract][Full Text] [Related]
7. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein. Nakada Y; Nishijyo T; Itoh Y J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821 [TBL] [Abstract][Full Text] [Related]
8. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mohl DA; Easter J; Gober JW Mol Microbiol; 2001 Nov; 42(3):741-55. PubMed ID: 11722739 [TBL] [Abstract][Full Text] [Related]
9. In-phase oscillation of global regulons is orchestrated by a pole-specific organizer. Janakiraman B; Mignolet J; Narayanan S; Viollier PH; Radhakrishnan SK Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12550-12555. PubMed ID: 27791133 [TBL] [Abstract][Full Text] [Related]
10. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus. Modrak SK; Melin ME; Bowers LM J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. Fernandez-Fernandez C; Gonzalez D; Collier J PLoS One; 2011; 6(10):e26028. PubMed ID: 22022497 [TBL] [Abstract][Full Text] [Related]
12. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Ostrovsky de Spicer P; Maloy S Proc Natl Acad Sci U S A; 1993 May; 90(9):4295-8. PubMed ID: 8483946 [TBL] [Abstract][Full Text] [Related]
13. Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon. Belitsky BR J Mol Biol; 2011 Oct; 413(2):321-36. PubMed ID: 21840319 [TBL] [Abstract][Full Text] [Related]
14. Coactivation of Vibrio vulnificus putAP operon by cAMP receptor protein and PutR through cooperative binding to overlapping sites. Lee JH; Choi SH Mol Microbiol; 2006 Apr; 60(2):513-24. PubMed ID: 16573699 [TBL] [Abstract][Full Text] [Related]
15. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus. Stein BJ; Fiebig A; Crosson S J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942 [TBL] [Abstract][Full Text] [Related]
16. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus. de Araújo HL; Martins BP; Vicente AM; Lorenzetti APR; Koide T; Marques MV Microbiol Spectr; 2021 Sep; 9(1):e0071021. PubMed ID: 34479415 [TBL] [Abstract][Full Text] [Related]
17. The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription. Muir RE; O'Brien TM; Gober JW Mol Microbiol; 2001 Mar; 39(6):1623-37. PubMed ID: 11260478 [TBL] [Abstract][Full Text] [Related]
18. Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter. Kaczmarczyk A; Hempel AM; von Arx C; Böhm R; Dubey BN; Nesper J; Schirmer T; Hiller S; Jenal U Nat Commun; 2020 Feb; 11(1):816. PubMed ID: 32041947 [TBL] [Abstract][Full Text] [Related]
19. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Modell JW; Hopkins AC; Laub MT Genes Dev; 2011 Jun; 25(12):1328-43. PubMed ID: 21685367 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. Hottes AK; Meewan M; Yang D; Arana N; Romero P; McAdams HH; Stephens C J Bacteriol; 2004 Mar; 186(5):1448-61. PubMed ID: 14973021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]