BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30279528)

  • 1. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus.
    Mouammine A; Eich K; Frandi A; Collier J
    Sci Rep; 2018 Oct; 8(1):14677. PubMed ID: 30279528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein.
    Keuntje B; Masepohl B; Klipp W
    J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline utilization system is required for infection by the pathogenic α-proteobacterium Brucella abortus.
    Caudill MT; Budnick JA; Sheehan LM; Lehman CR; Purwantini E; Mukhopadhyay B; Caswell CC
    Microbiology (Reading); 2017 Jul; 163(7):970-979. PubMed ID: 28691659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Lrp-type transcriptional regulator from Agrobacterium tumefaciens condenses more than 100 nucleotides of DNA into globular nucleoprotein complexes.
    Jafri S; Evoy S; Cho K; Craighead HG; Winans SC
    J Mol Biol; 1999 May; 288(5):811-24. PubMed ID: 10329181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated.
    Cho K; Winans SC
    Mol Microbiol; 1996 Dec; 22(5):1025-33. PubMed ID: 8971722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sinorhizobium meliloti putA gene regulation: a new model within the family Rhizobiaceae.
    Soto MJ; Jiménez-Zurdo JI; van Dillewijn P; Toro N
    J Bacteriol; 2000 Apr; 182(7):1935-41. PubMed ID: 10715000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus.
    Mohl DA; Easter J; Gober JW
    Mol Microbiol; 2001 Nov; 42(3):741-55. PubMed ID: 11722739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-phase oscillation of global regulons is orchestrated by a pole-specific organizer.
    Janakiraman B; Mignolet J; Narayanan S; Viollier PH; Radhakrishnan SK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12550-12555. PubMed ID: 27791133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus.
    Modrak SK; Melin ME; Bowers LM
    J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.
    Fernandez-Fernandez C; Gonzalez D; Collier J
    PLoS One; 2011; 6(10):e26028. PubMed ID: 22022497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator.
    Ostrovsky de Spicer P; Maloy S
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4295-8. PubMed ID: 8483946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon.
    Belitsky BR
    J Mol Biol; 2011 Oct; 413(2):321-36. PubMed ID: 21840319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coactivation of Vibrio vulnificus putAP operon by cAMP receptor protein and PutR through cooperative binding to overlapping sites.
    Lee JH; Choi SH
    Mol Microbiol; 2006 Apr; 60(2):513-24. PubMed ID: 16573699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.
    Stein BJ; Fiebig A; Crosson S
    J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus.
    de Araújo HL; Martins BP; Vicente AM; Lorenzetti APR; Koide T; Marques MV
    Microbiol Spectr; 2021 Sep; 9(1):e0071021. PubMed ID: 34479415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription.
    Muir RE; O'Brien TM; Gober JW
    Mol Microbiol; 2001 Mar; 39(6):1623-37. PubMed ID: 11260478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter.
    Kaczmarczyk A; Hempel AM; von Arx C; Böhm R; Dubey BN; Nesper J; Schirmer T; Hiller S; Jenal U
    Nat Commun; 2020 Feb; 11(1):816. PubMed ID: 32041947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW.
    Modell JW; Hopkins AC; Laub MT
    Genes Dev; 2011 Jun; 25(12):1328-43. PubMed ID: 21685367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media.
    Hottes AK; Meewan M; Yang D; Arana N; Romero P; McAdams HH; Stephens C
    J Bacteriol; 2004 Mar; 186(5):1448-61. PubMed ID: 14973021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.