These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30279658)

  • 1. Propensity Score-Based Approaches in High Dimension for Pharmacovigilance Signal Detection: an Empirical Comparison on the French Spontaneous Reporting Database.
    Courtois É; Pariente A; Salvo F; Volatier É; Tubert-Bitter P; Ahmed I
    Front Pharmacol; 2018; 9():1010. PubMed ID: 30279658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class-imbalanced subsampling lasso algorithm for discovering adverse drug reactions.
    Ahmed I; Pariente A; Tubert-Bitter P
    Stat Methods Med Res; 2018 Mar; 27(3):785-797. PubMed ID: 27114328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New adaptive lasso approaches for variable selection in automated pharmacovigilance signal detection.
    Courtois É; Tubert-Bitter P; Ahmed I
    BMC Med Res Methodol; 2021 Dec; 21(1):271. PubMed ID: 34852782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study.
    Ahmed I; Thiessard F; Miremont-Salamé G; Haramburu F; Kreft-Jais C; Bégaud B; Tubert-Bitter P
    Drug Saf; 2012 Jun; 35(6):495-506. PubMed ID: 22612853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Dimensional Propensity Score-Adjusted Case-Crossover for Discovering Adverse Drug Reactions from Computerized Administrative Healthcare Databases.
    Volatier E; Salvo F; Pariente A; Courtois É; Escolano S; Tubert-Bitter P; Ahmed I
    Drug Saf; 2022 Mar; 45(3):275-285. PubMed ID: 35179704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of statistical signal detection methods within and across spontaneous reporting databases.
    Candore G; Juhlin K; Manlik K; Thakrar B; Quarcoo N; Seabroke S; Wisniewski A; Slattery J
    Drug Saf; 2015 Jun; 38(6):577-87. PubMed ID: 25899605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian model selection in logistic regression for the detection of adverse drug reactions.
    Marbac M; Tubert-Bitter P; Sedki M
    Biom J; 2016 Nov; 58(6):1376-1389. PubMed ID: 27225325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three methods (consensual expert judgement, algorithmic and probabilistic approaches) of causality assessment of adverse drug reactions: an assessment using reports made to a French pharmacovigilance centre.
    Théophile H; Arimone Y; Miremont-Salamé G; Moore N; Fourrier-Réglat A; Haramburu F; Bégaud B
    Drug Saf; 2010 Nov; 33(11):1045-54. PubMed ID: 20925441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of statistical shrinkage parameters of disproportionality methods in spontaneous reporting system of China.
    Wang J; Ye XF; Guo XJ; Zhu TT; Qi N; Hou YF; Zhang TY; Shi WT; Wei X; Liu YZ; Wu GZ; He J
    Pharmacoepidemiol Drug Saf; 2015 Sep; 24(9):962-70. PubMed ID: 26095121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Alternative to Disproportionality: A Frequency-Based Method for Pharmacovigilance Data Mining.
    Jokinen JD; Lievano F; Scarazzini L; Truffa M
    Ther Innov Regul Sci; 2018 May; 52(3):294-299. PubMed ID: 29714535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefits of combining change-point analysis with disproportionality analysis in pharmacovigilance signal detection.
    Trinh NTH; Solé E; Benkebil M
    Pharmacoepidemiol Drug Saf; 2019 Mar; 28(3):370-376. PubMed ID: 29992679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands.
    Scholl JH; van Puijenbroek EP
    Pharmacoepidemiol Drug Saf; 2016 Dec; 25(12):1361-1367. PubMed ID: 27686554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On variance estimate for covariate adjustment by propensity score analysis.
    Zou B; Zou F; Shuster JJ; Tighe PJ; Koch GG; Zhou H
    Stat Med; 2016 Sep; 35(20):3537-48. PubMed ID: 26999553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. False discovery rate estimation for frequentist pharmacovigilance signal detection methods.
    Ahmed I; Dalmasso C; Haramburu F; Thiessard F; Broët P; Tubert-Bitter P
    Biometrics; 2010 Mar; 66(1):301-9. PubMed ID: 19432790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of measures of disproportionality in pharmacovigilance: three Dutch examples.
    Egberts AC; Meyboom RH; van Puijenbroek EP
    Drug Saf; 2002; 25(6):453-8. PubMed ID: 12071783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using classification tree analysis to generate propensity score weights.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2017 Aug; 23(4):703-712. PubMed ID: 28371206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating causal effects for survival (time-to-event) outcomes by combining classification tree analysis and propensity score weighting.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2018 Apr; 24(2):380-387. PubMed ID: 29230910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of consumer reporting on signal detection: using disproportionality analysis.
    Hammond IW; Rich DS; Gibbs TG
    Expert Opin Drug Saf; 2007 Nov; 6(6):705-12. PubMed ID: 17967159
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.