BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 30279735)

  • 1. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation.
    Lin E; Craig C; Lamothe M; Sarunic MV; Beg MF; Tibbits GF
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R755-68. PubMed ID: 25740339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature.
    Lin E; Ribeiro A; Ding W; Hove-Madsen L; Sarunic MV; Beg MF; Tibbits GF
    Am J Physiol Regul Integr Comp Physiol; 2014 Jun; 306(11):R823-36. PubMed ID: 24671241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeing the Light: The Use of Zebrafish for Optogenetic Studies of the Heart.
    Baillie JS; Stoyek MR; Quinn TA
    Front Physiol; 2021; 12():748570. PubMed ID: 35002753
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Stoyek MR; Doane SE; Dallaire SE; Long ZD; Ramia JM; Cassidy-Nolan DL; Poon KL; Brand T; Quinn TA
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrophysiological properties and mechanism of aging for the susceptibility of left atrium to arrhythmogenesis in rabbits].
    Yang S; Yang Z; Wu C; Li W; Xu H
    Zhonghua Yi Xue Za Zhi; 2015 Jul; 95(28):2302-6. PubMed ID: 26710958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics.
    Rayani K; Lin E; Craig C; Lamothe M; Shafaattalab S; Gunawan M; Li AY; Hove-Madsen L; Tibbits GF
    Prog Biophys Mol Biol; 2018 Oct; 138():69-90. PubMed ID: 30017908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts.
    Yu F; Zhao Y; Gu J; Quigley KL; Chi NC; Tai YC; Hsiai TK
    Biomed Microdevices; 2012 Apr; 14(2):357-66. PubMed ID: 22124886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac applications of optogenetics.
    Ambrosi CM; Klimas A; Yu J; Entcheva E
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):294-304. PubMed ID: 25035999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review.
    Baines O; Sha R; Kalla M; Holmes AP; Efimov IR; Pavlovic D; O'Shea C
    Europace; 2024 Feb; 26(2):. PubMed ID: 38227822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of electrical activity in small diameter fibers of the murine peripheral nerve with virally-delivered GCaMP6f.
    Anderson HE; Fontaine AK; Caldwell JH; Weir RF
    Sci Rep; 2018 Feb; 8(1):3219. PubMed ID: 29459701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator.
    Chang Liao ML; de Boer TP; Mutoh H; Raad N; Richter C; Wagner E; Downie BR; Unsöld B; Arooj I; Streckfuss-Bömeke K; Döker S; Luther S; Guan K; Wagner S; Lehnart SE; Maier LS; Stühmer W; Wettwer E; van Veen T; Morlock MM; Knöpfel T; Zimmermann WH
    Circ Res; 2015 Aug; 117(5):401-12. PubMed ID: 26078285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death.
    Huttner IG; Trivedi G; Jacoby A; Mann SA; Vandenberg JI; Fatkin D
    J Mol Cell Cardiol; 2013 Aug; 61():123-32. PubMed ID: 23791817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical control of cardiac excitation: combined high-resolution optogenetic actuation and optical mapping.
    Entcheva E; Bub G
    J Physiol; 2016 May; 594(9):2503-10. PubMed ID: 26857427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERG potassium channels and T-type calcium channels contribute to the pacemaker and atrioventricular conduction in zebrafish larvae.
    Salgado-Almario J; Molina Y; Vicente M; Martínez-Sielva A; Rodríguez-García R; Vincent P; Domingo B; Llopis J
    Acta Physiol (Oxf); 2024 Feb; 240(2):e14075. PubMed ID: 38071417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissection of local Ca(2+) signals inside cytosol by ER-targeted Ca(2+) indicator.
    Niwa F; Sakuragi S; Kobayashi A; Takagi S; Oda Y; Bannai H; Mikoshiba K
    Biochem Biophys Res Commun; 2016 Oct; 479(1):67-73. PubMed ID: 27616195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical imaging of stimulation-evoked cortical activity using GCaMP6f and jRGECO1a.
    Park K; Liyanage AC; Koretsky AP; Pan Y; Du C
    Quant Imaging Med Surg; 2021 Mar; 11(3):998-1009. PubMed ID: 33654672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.
    Weber M; Huisken J
    Swiss Med Wkly; 2015; 145():w14227. PubMed ID: 26700795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional genomics in zebrafish as a tool to identify novel antiarrhythmic targets.
    Pott A; Rottbauer W; Just S
    Curr Med Chem; 2014; 21(11):1320-9. PubMed ID: 24372224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.