These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30280234)
1. Phenotyping Thermal Responses of Yeasts and Yeast-like Microorganisms at the Individual and Population Levels: Proof-of-Concept, Development and Application of an Experimental Framework to a Plant Pathogen. Boixel AL; Delestre G; Legeay J; Chelle M; Suffert F Microb Ecol; 2019 Jul; 78(1):42-56. PubMed ID: 30280234 [TBL] [Abstract][Full Text] [Related]
2. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Croll D; McDonald BA Mol Ecol; 2017 Apr; 26(7):2027-2040. PubMed ID: 27696587 [TBL] [Abstract][Full Text] [Related]
3. How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch. McDonald BA; Mundt CC Phytopathology; 2016 Sep; 106(9):948-55. PubMed ID: 27111799 [TBL] [Abstract][Full Text] [Related]
4. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Lendenmann MH; Croll D; Palma-Guerrero J; Stewart EL; McDonald BA Heredity (Edinb); 2016 Apr; 116(4):384-94. PubMed ID: 26758189 [TBL] [Abstract][Full Text] [Related]
5. Seasonal Changes Drive Short-Term Selection for Fitness Traits in the Wheat Pathogen Zymoseptoria tritici. Suffert F; Ravigné V; Sache I Appl Environ Microbiol; 2015 Sep; 81(18):6367-79. PubMed ID: 26150467 [TBL] [Abstract][Full Text] [Related]
6. Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection. Steinberg G Fungal Genet Biol; 2015 Jun; 79():17-23. PubMed ID: 26092785 [TBL] [Abstract][Full Text] [Related]
7. Patterns of thermal adaptation in a globally distributed plant pathogen: Local diversity and plasticity reveal two-tier dynamics. Boixel AL; Chelle M; Suffert F Ecol Evol; 2022 Jan; 12(1):e8515. PubMed ID: 35127031 [TBL] [Abstract][Full Text] [Related]
8. Linear Correlation Analysis of Zymoseptoria tritici Aggressiveness with In Vitro Growth Rate. Zhan F; Xie Y; Zhu W; Sun D; McDonald BA; Zhan J Phytopathology; 2016 Nov; 106(11):1255-1261. PubMed ID: 27348342 [TBL] [Abstract][Full Text] [Related]
9. Is Zymoseptoria tritici a hemibiotroph? Sánchez-Vallet A; McDonald MC; Solomon PS; McDonald BA Fungal Genet Biol; 2015 Jun; 79():29-32. PubMed ID: 26092787 [TBL] [Abstract][Full Text] [Related]
10. Sexual Reproduction in the Fungal Foliar Pathogen Zymoseptoria tritici Is Driven by Antagonistic Density Dependence Mechanisms. Suffert F; Delestre G; Gélisse S Microb Ecol; 2019 Jan; 77(1):110-123. PubMed ID: 29876608 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptomics Reveals How Wheat Responds to Infection by Zymoseptoria tritici. Ma X; Keller B; McDonald BA; Palma-Guerrero J; Wicker T Mol Plant Microbe Interact; 2018 Apr; 31(4):420-431. PubMed ID: 29090630 [TBL] [Abstract][Full Text] [Related]
12. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola). Poppe S; Dorsheimer L; Happel P; Stukenbrock EH PLoS Pathog; 2015 Jul; 11(7):e1005055. PubMed ID: 26225424 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici. Yang F; Yin Q Proteomics; 2016 Jan; 16(1):98-101. PubMed ID: 26435044 [TBL] [Abstract][Full Text] [Related]
14. The development of a foliar fungal pathogen does react to leaf temperature! Bernard F; Sache I; Suffert F; Chelle M New Phytol; 2013 Apr; 198(1):232-240. PubMed ID: 23373986 [TBL] [Abstract][Full Text] [Related]
15. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Francisco CS; Ma X; Zwyssig MM; McDonald BA; Palma-Guerrero J Sci Rep; 2019 Jul; 9(1):9642. PubMed ID: 31270361 [TBL] [Abstract][Full Text] [Related]
16. The ZtVf1 transcription factor regulates development and virulence in the foliar wheat pathogen Zymoseptoria tritici. Mohammadi N; Mehrabi R; Mirzadi Gohari A; Mohammadi Goltapeh E; Safaie N; Kema GHJ Fungal Genet Biol; 2017 Dec; 109():26-35. PubMed ID: 29031630 [TBL] [Abstract][Full Text] [Related]
17. Red fluorescent proteins for imaging Zymoseptoria tritici during invasion of wheat. Schuster M; Kilaru S; Guo M; Sommerauer M; Lin C; Steinberg G Fungal Genet Biol; 2015 Jun; 79():132-40. PubMed ID: 26092800 [TBL] [Abstract][Full Text] [Related]
18. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. Krishnan P; Meile L; Plissonneau C; Ma X; Hartmann FE; Croll D; McDonald BA; Sánchez-Vallet A BMC Biol; 2018 Jul; 16(1):78. PubMed ID: 30012138 [TBL] [Abstract][Full Text] [Related]
19. Control of Zymoseptoria tritici cause of septoria tritici blotch of wheat using antifungal Lactobacillus strains. Lynch KM; Zannini E; Guo J; Axel C; Arendt EK; Kildea S; Coffey A J Appl Microbiol; 2016 Aug; 121(2):485-94. PubMed ID: 27155088 [TBL] [Abstract][Full Text] [Related]
20. Evolution of black yeasts: possible adaptation to the human host. de Hoog GS Antonie Van Leeuwenhoek; 1993 Feb; 63(2):105-9. PubMed ID: 8259828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]