These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30280281)

  • 1. Limit to steady-state aerobic power of skeletal muscles.
    Paglietti A
    J Biol Phys; 2018 Dec; 44(4):619-646. PubMed ID: 30280281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise.
    Christmass MA; Dawson B; Passeretto P; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):423-35. PubMed ID: 10502076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise.
    Christmass MA; Dawson B; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):436-47. PubMed ID: 10502077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle fuel selection occurs at the mitochondrial level.
    Kuzmiak-Glancy S; Willis WT
    J Exp Biol; 2014 Jun; 217(Pt 11):1993-2003. PubMed ID: 24625643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does skeletal muscle carnitine availability influence fuel selection during exercise?
    Stephens FB
    Proc Nutr Soc; 2018 Feb; 77(1):11-19. PubMed ID: 29037265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism.
    Wagenmakers AJ
    Exerc Sport Sci Rev; 1998; 26():287-314. PubMed ID: 9696993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds.
    Rusko H; Luhtanen P; Rahkila P; Viitasalo J; Rehunen S; Härkönen M
    Eur J Appl Physiol Occup Physiol; 1986; 55(2):181-6. PubMed ID: 3699005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat production in human skeletal muscle at the onset of intense dynamic exercise.
    González-Alonso J; Quistorff B; Krustrup P; Bangsbo J; Saltin B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):603-15. PubMed ID: 10766936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the immediate recovery energy expenditure of resistance training.
    Scott CB
    J Strength Cond Res; 2011 Apr; 25(4):1159-63. PubMed ID: 20733523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limits to anaerobic energy and cytosolic concentration in the living cell.
    Paglietti A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052712. PubMed ID: 26651728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle deoxygenation in aerobic and anaerobic exercise.
    Nioka S; Moser D; Lech G; Evengelisti M; Verde T; Chance B; Kuno S
    Adv Exp Med Biol; 1998; 454():63-70. PubMed ID: 9889877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males.
    O'Malley T; Myette-Cote E; Durrer C; Little JP
    Appl Physiol Nutr Metab; 2017 Oct; 42(10):1031-1035. PubMed ID: 28750585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood lactate diagnostics in exercise testing and training.
    Beneke R; Leithäuser RM; Ochentel O
    Int J Sports Physiol Perform; 2011 Mar; 6(1):8-24. PubMed ID: 21487146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fat metabolism during exercise: a review. Part I: fatty acid mobilization and muscle metabolism.
    Jeukendrup AE; Saris WH; Wagenmakers AJ
    Int J Sports Med; 1998 May; 19(4):231-44. PubMed ID: 9657362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle.
    Nielsen J; Gejl KD; Hey-Mogensen M; Holmberg HC; Suetta C; Krustrup P; Elemans CPH; Ørtenblad N
    J Physiol; 2017 May; 595(9):2839-2847. PubMed ID: 27696420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type.
    Vanhatalo A; Black MI; DiMenna FJ; Blackwell JR; Schmidt JF; Thompson C; Wylie LJ; Mohr M; Bangsbo J; Krustrup P; Jones AM
    J Physiol; 2016 Aug; 594(15):4407-23. PubMed ID: 26940850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of energy metabolism of skeletal muscles in alcoholic liver disease--expired gas analysis during exercise.
    Shiraishi K; Motegi S; Nagaoka R; Ogasawara F; Saito T; Watanabe M; Matsuzaki S
    Alcohol Clin Exp Res; 2005 Dec; 29(12 Suppl):282S-4S. PubMed ID: 16385237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise.
    Stellingwerff T; Glazier L; Watt MJ; LeBlanc PJ; Heigenhauser GJ; Spriet LL
    J Appl Physiol (1985); 2005 Jan; 98(1):250-6. PubMed ID: 15377650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms.
    de Lange P; Moreno M; Silvestri E; Lombardi A; Goglia F; Lanni A
    FASEB J; 2007 Nov; 21(13):3431-41. PubMed ID: 17595346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similar substrate oxidation rates in concentric and eccentric cycling matched for aerobic power output.
    Isacco L; Ritter O; Tordi N; Laroche D; Degano B; Bouhaddi M; Rakobowchuk M; Mourot L
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1204-1207. PubMed ID: 27769148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.