These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 30280537)
1. [Fluorescence Properties of Single-Trp Peptide: Response to pH and Metal Ions]. Qin CF; Li L; Yu XT; Chang MF; Cao XD; Pan HF; Zhang SJ; Chen JQ; Xu JH Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):476-80. PubMed ID: 30280537 [TBL] [Abstract][Full Text] [Related]
2. [A study on the effect of rare earth metal ions on fluorescence spectra of the tryptophan using fluorescence spectroscopy]. Fan ZF; Du LM; Ji X; Xie HM Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):682-4. PubMed ID: 12945331 [TBL] [Abstract][Full Text] [Related]
3. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex. Duan R; Li C; Liu S; Liu Z; Li Y; Yuan Y; Hu X Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():272-7. PubMed ID: 26225734 [TBL] [Abstract][Full Text] [Related]
4. Biometal binding-site mimicry with modular, hetero-bifunctionally modified architecture encompassing a Trp/His motif: insights into spatiotemporal noncovalent interactions from a comparative spectroscopic study. Yang CM Dalton Trans; 2011 Mar; 40(12):3008-27. PubMed ID: 21331408 [TBL] [Abstract][Full Text] [Related]
5. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry. Makowska J; Żamojć K; Wyrzykowski D; Uber D; Wierzbicka M; Wiczk W; Chmurzyński L Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():451-6. PubMed ID: 26363471 [TBL] [Abstract][Full Text] [Related]
6. Determination of iron(II) and iron(III) via static quenching of the fluorescence of tryptophan-protected copper nanoclusters. Kardar ZS; Shemirani F; Zadmard R Mikrochim Acta; 2020 Jan; 187(1):81. PubMed ID: 31897750 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive and selective fluorescence detection of copper (II) ion based on multi-ligand metal chelation. Zhang S; Yu T; Sun M; Yu H; Zhang Z; Wang S; Jiang H Talanta; 2014 Aug; 126():185-90. PubMed ID: 24881551 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence studies on dopamine beta-monooxygenase: effects of salts, pH changes, metal-chelating agents and Cu2+. Syvertsen C; Melø TB; Ljones T Biochim Biophys Acta; 1987 Jul; 914(1):6-18. PubMed ID: 3607062 [TBL] [Abstract][Full Text] [Related]
9. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution. Vos R; Engelborghs Y Photochem Photobiol; 1994 Jul; 60(1):24-32. PubMed ID: 8073074 [TBL] [Abstract][Full Text] [Related]
11. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
12. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Yuan T; Weljie AM; Vogel HJ Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473 [TBL] [Abstract][Full Text] [Related]
13. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein. Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668 [TBL] [Abstract][Full Text] [Related]
14. Harnessing the flexibility of peptidic scaffolds to control their copper(II)-coordination properties: a potentiometric and spectroscopic study. Fragoso A; Lamosa P; Delgado R; Iranzo O Chemistry; 2013 Feb; 19(6):2076-88. PubMed ID: 23293061 [TBL] [Abstract][Full Text] [Related]
15. Engineered non-fluorescent Affibody molecules facilitate studies of the amyloid-beta (Aβ) peptide in monomeric form: low pH was found to reduce Aβ/Cu(II) binding affinity. Lindgren J; Segerfeldt P; Sholts SB; Gräslund A; Karlström AE; Wärmländer SK J Inorg Biochem; 2013 Mar; 120():18-23. PubMed ID: 23262458 [TBL] [Abstract][Full Text] [Related]
16. Interaction of beta-amyloid(1-40) peptide with pairs of metal ions: An electrospray ion trap mass spectrometric model study. Drochioiu G; Manea M; Dragusanu M; Murariu M; Dragan ES; Petre BA; Mezo G; Przybylski M Biophys Chem; 2009 Sep; 144(1-2):9-20. PubMed ID: 19539421 [TBL] [Abstract][Full Text] [Related]
17. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Joshi BP; Park J; Lee WI; Lee KH Talanta; 2009 May; 78(3):903-9. PubMed ID: 19269448 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence of a histidine-modified enhanced green fluorescent protein (EGFP) effectively quenched by copper(II) ions. Bálint EÉ; Petres J; Szabó M; Orbán CK; Szilágyi L; Ábrahám B J Fluoresc; 2013 Mar; 23(2):273-81. PubMed ID: 23129167 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the metal binding properties of a histidine-rich fusogenic peptide by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Sinz A; Jin AJ; Zschörnig O J Mass Spectrom; 2003 Nov; 38(11):1150-9. PubMed ID: 14648822 [TBL] [Abstract][Full Text] [Related]
20. Copper(II), nickel(II) and zinc(II) complexes of N-acetyl-His-Pro-His-His-NH2: equilibria, solution structure and enzyme mimicking. Jakab NI; Jancsó A; Gajda T; Gyurcsik B; Rockenbauer A J Inorg Biochem; 2008 Jul; 102(7):1438-48. PubMed ID: 18289685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]