These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30281278)

  • 1. Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems.
    Song E; Li R; Jin X; Du H; Huang Y; Zhang J; Xia Y; Fang H; Lee YK; Yu KJ; Chang JK; Mei Y; Alam MA; Huang Y; Rogers JA
    ACS Nano; 2018 Oct; 12(10):10317-10326. PubMed ID: 30281278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.
    Fang H; Zhao J; Yu KJ; Song E; Farimani AB; Chiang CH; Jin X; Xue Y; Xu D; Du W; Seo KJ; Zhong Y; Yang Z; Won SM; Fang G; Choi SW; Chaudhuri S; Huang Y; Alam MA; Viventi J; Aluru NR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11682-11687. PubMed ID: 27791052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants.
    Li J; Li R; Du H; Zhong Y; Chen Y; Nan K; Won SM; Zhang J; Huang Y; Rogers JA
    ACS Nano; 2019 Jan; 13(1):660-670. PubMed ID: 30608642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems.
    Lee YK; Yu KJ; Kim Y; Yoon Y; Xie Z; Song E; Luan H; Feng X; Huang Y; Rogers JA
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42633-42638. PubMed ID: 29178781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials and Interface Designs of Waterproof Field-Effect Transistor Arrays for Detection of Neurological Biomarkers.
    Dong Y; Chen S; Liu TL; Li J
    Small; 2022 Mar; 18(11):e2106866. PubMed ID: 35023615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
    Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDMS-Parylene Adhesion Improvement via Ceramic Interlayers to Strengthen the Encapsulation of Active Neural Implants.
    Babaroud NB; Dekker R; Serdijn W; Giagka V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3399-3402. PubMed ID: 33018733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics.
    Phan HP; Zhong Y; Nguyen TK; Park Y; Dinh T; Song E; Vadivelu RK; Masud MK; Li J; Shiddiky MJA; Dao D; Yamauchi Y; Rogers JA; Nguyen NT
    ACS Nano; 2019 Oct; 13(10):11572-11581. PubMed ID: 31433939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defined cell adhesion for silicon-based implant materials by using vapor-deposited functional coatings.
    Wu CY; Guan ZY; Lin PC; Chen ST; Lin PK; Chen PC; Chao PG; Chen HY
    Colloids Surf B Biointerfaces; 2019 Mar; 175():545-553. PubMed ID: 30579055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems.
    Hu Z; Zhao J; Guo H; Li R; Wu M; Shen J; Wang Y; Qiao Z; Xu Y; Haugstad G; An D; Xie Z; Kandela I; Nandoliya KR; Chen Y; Yu Y; Yuan Q; Hou J; Deng Y; AlDubayan AH; Yang Q; Zeng L; Lu D; Koo J; Bai W; Song E; Yao S; Wolverton C; Huang Y; Rogers JA
    Adv Mater; 2024 Apr; 36(15):e2307782. PubMed ID: 38303684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parylene C-based flexible electronics for pH monitoring applications.
    Trantidou T; Tariq M; Terracciano CM; Toumazou C; Prodromakis T
    Sensors (Basel); 2014 Jul; 14(7):11629-39. PubMed ID: 24988379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator.
    Nguyen TK; Barton M; Ashok A; Truong TA; Yadav S; Leitch M; Nguyen TV; Kashaninejad N; Dinh T; Hold L; Yamauchi Y; Nguyen NT; Phan HP
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2203287119. PubMed ID: 35939711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.
    Xue K; Wang L; An J; Xu J
    Nanotechnology; 2011 May; 22(19):195705. PubMed ID: 21430314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term bilayer encapsulation performance of atomic layer deposited Al₂O₃ and Parylene C for biomedical implantable devices.
    Xie X; Rieth L; Caldwell R; Diwekar M; Tathireddy P; Sharma R; Solzbacher F
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2943-51. PubMed ID: 23751949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hafnium transistor design for neural interfacing.
    Parent DW; Basham EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3356-9. PubMed ID: 19163428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale HfO
    Jayakumar G; Legallais M; Hellström PE; Mouis M; Pignot-Paintrand I; Stambouli V; Ternon C; Östling M
    Nanotechnology; 2019 May; 30(18):184002. PubMed ID: 30654356
    [No Abstract]   [Full Text] [Related]  

  • 18. Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation.
    Xie X; Rieth L; Williams L; Negi S; Bhandari R; Caldwell R; Sharma R; Tathireddy P; Solzbacher F
    J Neural Eng; 2014 Apr; 11(2):026016. PubMed ID: 24658358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow DNA transport through nanopores in hafnium oxide membranes.
    Larkin J; Henley R; Bell DC; Cohen-Karni T; Rosenstein JK; Wanunu M
    ACS Nano; 2013 Nov; 7(11):10121-10128. PubMed ID: 24083444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation.
    Pak A; Nanbakhsh K; Hölck O; Ritasalo R; Sousa M; Van Gompel M; Pahl B; Wilson J; Kallmayer C; Giagka V
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.