These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30281398)

  • 1. Effervescent-assisted dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for the determination of fungicides in vinegar and juice.
    Jing X; Zhang J; Zhu J; Chen Z; Yi L; Wang X
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2128-2134. PubMed ID: 30281398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An effervescence tablet-assisted microextraction based on the solidification of deep eutectic solvents for the determination of strobilurin fungicides in water, juice, wine, and vinegar samples by HPLC.
    Jia L; Huang X; Zhao W; Wang H; Jing X
    Food Chem; 2020 Jul; 317():126424. PubMed ID: 32088405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effervescence assisted dispersive liquid-liquid microextraction based on cohesive floating organic drop for the determination of herbicides and fungicides in water and grape juice.
    Liu X; Liu C; Wang P; Yao G; Liu D; Zhou Z
    Food Chem; 2018 Apr; 245():653-658. PubMed ID: 29287422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation-assisted dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for the determination of triazole fungicides in water samples by high-performance liquid chromatography.
    Jing X; Yang L; Zhao W; Wang F; Chen Z; Ma L; Jia L; Wang X
    J Chromatogr A; 2019 Jul; 1597():46-53. PubMed ID: 30926256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effervescence-assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice.
    Jiang W; Chen X; Liu F; You X; Xue J
    J Sep Sci; 2014 Nov; 37(21):3157-63. PubMed ID: 25136817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of fungicides in sediments using a dispersive liquid-liquid microextraction procedure based on solidification of floating organic drop.
    Dong S; Huang G; Lu J; Huang T
    J Sep Sci; 2014 Jun; 37(11):1337-42. PubMed ID: 24634404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for HPLC determination of three strobilurin fungicides in cereals.
    Huang X; Du Z; Wu B; Jia L; Wang X; Jing X
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Aug; 37(8):1279-1288. PubMed ID: 32436780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of fungicides in fruit juice by ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic solvent droplets followed by high performance liquid chromatography.
    Fan RZ; Liu C; Jiang W; Wang X; Liu F
    J AOAC Int; 2014; 97(1):183-7. PubMed ID: 24672876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-assisted surfactant-enhanced emulsification microextraction based on the solidification of a floating organic droplet used for the simultaneous determination of six fungicide residues in juices and red wine.
    You X; Wang S; Liu F; Shi K
    J Chromatogr A; 2013 Jul; 1300():64-9. PubMed ID: 23473514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel extraction method for β-carotene and other carotenoids in fruit juices using air-assisted, low-density solvent-based liquid-liquid microextraction and solidified floating organic droplets.
    Sricharoen P; Limchoowong N; Techawongstien S; Chanthai S
    Food Chem; 2016 Jul; 203():386-393. PubMed ID: 26948629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of neonicotinoid insecticides and metabolites in rice by dispersive solid-liquid microextraction based on an in situ acid-base effervescent reaction and solidification of a floating organic droplet.
    Xue J; Zhang D; Wu X; Pan D; Shi T; Hua R
    Anal Bioanal Chem; 2019 Jan; 411(2):315-327. PubMed ID: 30578440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of dispersive liquid-liquid microextraction based on the solidification of floating organic droplets using an orthogonal array design and its application for the determination of fungicide concentrations in environmental water samples.
    Yang X; Yang M; Hou B; Li S; Zhang Y; Lu R; Zhang S
    J Sep Sci; 2014 Aug; 37(15):1996-2001. PubMed ID: 24824837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid-liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples.
    Nemati M; Farajzadeh MA; Mohebbi A; Khodadadeian F; Afshar Mogaddam MR
    J Sep Sci; 2020 Mar; 43(6):1119-1127. PubMed ID: 31876075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binary-solvent-based ionic-liquid-assisted surfactant-enhanced emulsification microextraction for the determination of four fungicides in apple juice and apple vinegar.
    Chen X; Zhang X; Liu F; Hou F
    J Sep Sci; 2017 Feb; 40(4):901-908. PubMed ID: 28008718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclodextrin-based dispersive liquid-liquid microextraction for the determination of fungicides in water, juice, and vinegar samples via HPLC.
    Jing X; Huang X; Zhang Y; Wang M; Xue H; Wang X; Jia L
    Food Chem; 2022 Jan; 367():130664. PubMed ID: 34343804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solidification of floating organic droplet microextraction for determination of seven insecticides in fruit juice, vegetables and agricultural runoff using gas chromatography with flame ionization and mass spectrometry detection.
    Hoisang W; Nacapricha D; Wilairat P; Tiyapongpattana W
    J Sep Sci; 2019 Jun; 42(11):2032-2043. PubMed ID: 30938053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effervescence-assisted dispersive solid-phase extraction using ionic-liquid-modified magnetic β-cyclodextrin/attapulgite coupled with high-performance liquid chromatography for fungicide detection in honey and juice.
    Wu X; Yang M; Zeng H; Xi X; Zhang S; Lu R; Gao H; Zhou W
    J Sep Sci; 2016 Nov; 39(22):4422-4428. PubMed ID: 27670749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic-liquid-based, manual-shaking- and ultrasound-assisted, surfactant-enhanced emulsification microextraction for the determination of three fungicide residues in juice samples.
    Chen X; You X; Liu F; Hou F; Zhang X
    J Sep Sci; 2015 Jan; 38(1):93-9. PubMed ID: 25394281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-assisted liquid-liquid microextraction using floating organic droplet solidification for simultaneous extraction and spectrophotometric determination of some drugs in biological samples through chemometrics methods.
    Farahmand F; Ghasemzadeh B; Naseri A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():72-79. PubMed ID: 28692870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.