These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 30281429)
1. Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms. Huiszoon RC; Subramanian S; Ramiah Rajasekaran P; Beardslee LA; Bentley WE; Ghodssi R IEEE Trans Biomed Eng; 2019 May; 66(5):1337-1345. PubMed ID: 30281429 [TBL] [Abstract][Full Text] [Related]
2. An Integrated Microsystem for Real-Time Detection and Threshold-Activated Treatment of Bacterial Biofilms. Subramanian S; Tolstaya EI; Winkler TE; Bentley WE; Ghodssi R ACS Appl Mater Interfaces; 2017 Sep; 9(37):31362-31371. PubMed ID: 28816432 [TBL] [Abstract][Full Text] [Related]
3. Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip. Liu L; Xu Y; Cui F; Xia Y; Chen L; Mou X; Lv J Biosens Bioelectron; 2018 Jul; 112():86-92. PubMed ID: 29698812 [TBL] [Abstract][Full Text] [Related]
4. Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Settu K; Chen CJ; Liu JT; Chen CL; Tsai JZ Biosens Bioelectron; 2015 Apr; 66():244-50. PubMed ID: 25437359 [TBL] [Abstract][Full Text] [Related]
5. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Paredes J; Becerro S; Arizti F; Aguinaga A; Del Pozo JL; Arana S Biosens Bioelectron; 2012; 38(1):226-32. PubMed ID: 22705402 [TBL] [Abstract][Full Text] [Related]
6. Integrated System for Bacterial Detection and Biofilm Treatment on Indwelling Urinary Catheters. Huiszoon RC; Han J; Chu S; Stine JM; Beardslee LA; Ghodssi R IEEE Trans Biomed Eng; 2021 Nov; 68(11):3241-3249. PubMed ID: 33735072 [TBL] [Abstract][Full Text] [Related]
7. Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes. Paredes J; Becerro S; Arana S J Microbiol Methods; 2014 May; 100():77-83. PubMed ID: 24632516 [TBL] [Abstract][Full Text] [Related]
8. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy. Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy. Estrada-Leypon O; Moya A; Guimera A; Gabriel G; Agut M; Sanchez B; Borros S Bioelectrochemistry; 2015 Oct; 105():56-64. PubMed ID: 26004850 [TBL] [Abstract][Full Text] [Related]
10. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment. Subramanian S; Gerasopoulos K; Guo M; Sintim HO; Bentley WE; Ghodssi R Biomed Microdevices; 2016 Oct; 18(5):95. PubMed ID: 27647148 [TBL] [Abstract][Full Text] [Related]
11. An impedimetric sensor for monitoring the growth of Staphylococcus epidermidis. Oliver LM; Dunlop PS; Byrne JA; Blair IS; Boyle M; McGuigan KG; McAdams ET Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():535-8. PubMed ID: 17946403 [TBL] [Abstract][Full Text] [Related]
12. Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement. Wang R; Xu Y; Sors T; Irudayaraj J; Ren W; Wang R Mikrochim Acta; 2018 Feb; 185(3):184. PubMed ID: 29594583 [TBL] [Abstract][Full Text] [Related]
13. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. Gutiérrez D; Hidalgo-Cantabrana C; Rodríguez A; García P; Ruas-Madiedo P PLoS One; 2016; 11(10):e0163966. PubMed ID: 27695058 [TBL] [Abstract][Full Text] [Related]
14. Detection and removal of pathogenic biofilms on medical implant surfaces. Dunlop P; Oliver L; Byrne T; McAdams E Stud Health Technol Inform; 2005; 117():213-7. PubMed ID: 16282672 [TBL] [Abstract][Full Text] [Related]
15. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Pires L; Sachsenheimer K; Kleintschek T; Waldbaur A; Schwartz T; Rapp BE Biosens Bioelectron; 2013 Sep; 47():157-63. PubMed ID: 23570679 [TBL] [Abstract][Full Text] [Related]
16. Chitosans as new tools against biofilms formation on the surface of silicone urinary catheters. Campana R; Biondo F; Mastrotto F; Baffone W; Casettari L Int J Biol Macromol; 2018 Oct; 118(Pt B):2193-2200. PubMed ID: 30012489 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Hou S; Burton EA; Simon KA; Blodgett D; Luk YY; Ren D Appl Environ Microbiol; 2007 Jul; 73(13):4300-7. PubMed ID: 17483274 [TBL] [Abstract][Full Text] [Related]
18. Interaction between atypical microorganisms and E. coli in catheter-associated urinary tract biofilms. Azevedo AS; Almeida C; Melo LF; Azevedo NF Biofouling; 2014 Sep; 30(8):893-902. PubMed ID: 25184430 [TBL] [Abstract][Full Text] [Related]
19. Specific and targeted detection of viable Escherichia coli O157:H7 using a sensitive and reusable impedance biosensor with dose and time response studies. Dweik M; Stringer RC; Dastider SG; Wu Y; Almasri M; Barizuddin S Talanta; 2012 May; 94():84-9. PubMed ID: 22608418 [TBL] [Abstract][Full Text] [Related]
20. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Levering V; Cao C; Shivapooja P; Levinson H; Zhao X; López GP Biomaterials; 2016 Jan; 77():77-86. PubMed ID: 26584348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]