These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 30281797)
1. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. Li JN; Sheets PL J Physiol; 2018 Dec; 596(24):6289-6305. PubMed ID: 30281797 [TBL] [Abstract][Full Text] [Related]
2. Sex differences in the amygdaloid projections to the ventrolateral periaqueductal gray and their activation during inflammatory pain in the rat. Cantu DJ; Kaur S; Murphy AZ; Averitt DL J Chem Neuroanat; 2022 Oct; 124():102123. PubMed ID: 35738454 [TBL] [Abstract][Full Text] [Related]
3. Nocistatin and nociceptin exert opposite effects on the excitability of central amygdala nucleus-periaqueductal gray projection neurons. Chen YL; Li AH; Yeh TH; Chou AH; Wang HL Mol Cell Neurosci; 2009 Jan; 40(1):76-88. PubMed ID: 18930828 [TBL] [Abstract][Full Text] [Related]
4. Neuroanatomical and neurochemical organization of projections from the central amygdaloid nucleus to the nucleus retroambiguus via the periaqueductal gray in the rat. Oka T; Tsumori T; Yokota S; Yasui Y Neurosci Res; 2008 Dec; 62(4):286-98. PubMed ID: 18948150 [TBL] [Abstract][Full Text] [Related]
5. Cannabinoids and Opioids Differentially Target Extrinsic and Intrinsic GABAergic Inputs onto the Periaqueductal Grey Descending Pathway. Winters BL; Lau BK; Vaughan CW J Neurosci; 2022 Oct; 42(41):7744-7756. PubMed ID: 36414010 [TBL] [Abstract][Full Text] [Related]
6. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study. Rizvi TA; Ennis M; Shipley MT J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779 [TBL] [Abstract][Full Text] [Related]
7. Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain. Cheriyan J; Sheets PL J Neurosci; 2018 May; 38(20):4829-4839. PubMed ID: 29695413 [TBL] [Abstract][Full Text] [Related]
8. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. Finnegan TF; Chen SR; Pan HL J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784 [TBL] [Abstract][Full Text] [Related]
9. Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala. Li JN; Sheets PL Pain; 2020 Jan; 161(1):166-176. PubMed ID: 31479066 [TBL] [Abstract][Full Text] [Related]
10. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516 [TBL] [Abstract][Full Text] [Related]
12. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. Penzo MA; Robert V; Li B J Neurosci; 2014 Feb; 34(7):2432-7. PubMed ID: 24523533 [TBL] [Abstract][Full Text] [Related]
13. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat. Da Costa Gomez TM; Chandler SD; Behbehani MM Neurosci Lett; 1996 Aug; 214(1):5-8. PubMed ID: 8873118 [TBL] [Abstract][Full Text] [Related]
14. Sex differences in the anatomical and functional organization of the periaqueductal gray-rostral ventromedial medullary pathway in the rat: a potential circuit mediating the sexually dimorphic actions of morphine. Loyd DR; Murphy AZ J Comp Neurol; 2006 Jun; 496(5):723-38. PubMed ID: 16615128 [TBL] [Abstract][Full Text] [Related]
15. Acquisition of analgesic properties by the cholecystokinin (CCK)/CCK2 receptor system within the amygdala in a persistent inflammatory pain condition. Roca-Lapirot O; Fossat P; Ma S; Egron K; Trigilio G; López-González MJ; Covita J; Bouali-Benazzouz R; Favereaux A; Gundlach AL; Landry M Pain; 2019 Feb; 160(2):345-357. PubMed ID: 30281531 [TBL] [Abstract][Full Text] [Related]
16. Involvement of the periaqueductal gray in the descending antinociceptive effect induced by the central nucleus of amygdala. Bourbia N; Pertovaara A Physiol Res; 2018 Aug; 67(4):647-655. PubMed ID: 29750883 [TBL] [Abstract][Full Text] [Related]
17. Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. Rizvi TA; Ennis M; Behbehani MM; Shipley MT J Comp Neurol; 1991 Jan; 303(1):121-31. PubMed ID: 1706363 [TBL] [Abstract][Full Text] [Related]
18. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. An X; Bandler R; Ongür D; Price JL J Comp Neurol; 1998 Nov; 401(4):455-79. PubMed ID: 9826273 [TBL] [Abstract][Full Text] [Related]
19. Histochemical Characterization of the Dorsal Raphe-Periaqueductal Grey Dopamine Transporter Neurons Projecting to the Extended Amygdala. Zhao Q; Ito T; Soko C; Hori Y; Furuyama T; Hioki H; Konno K; Yamasaki M; Watanabe M; Ohtsuka S; Ono M; Kato N; Yamamoto R eNeuro; 2022; 9(3):. PubMed ID: 35580986 [TBL] [Abstract][Full Text] [Related]
20. Identification of periaqueductal gray and dorsal raphe nucleus neurons projecting to both the trigeminal sensory complex and forebrain structures: a fluorescent retrograde double-labeling study in the rat. Li YQ; Takada M; Matsuzaki S; Shinonaga Y; Mizuno N Brain Res; 1993 Oct; 623(2):267-77. PubMed ID: 8221108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]