These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30282024)

  • 1. Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits.
    Chopek JW; Nascimento F; Beato M; Brownstone RM; Zhang Y
    Cell Rep; 2018 Oct; 25(1):146-156.e3. PubMed ID: 30282024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. V3 Interneurons Are Active and Recruit Spinal Motor Neurons during
    Wiggin TD; Montgomery JE; Brunick AJ; Peck JH; Masino MA
    eNeuro; 2022; 9(2):. PubMed ID: 35277451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Temporal Neurogenesis Patterning of Spinal p3-V3 Interneurons into Divergent Subpopulation Assemblies.
    Deska-Gauthier D; Borowska-Fielding J; Jones CT; Zhang Y
    J Neurosci; 2020 Feb; 40(7):1440-1452. PubMed ID: 31826942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. V3 interneuron subpopulations in the mouse spinal cord undergo distinctive postnatal maturation processes.
    Borowska J; Jones CT; Deska-Gauthier D; Zhang Y
    Neuroscience; 2015 Jun; 295():221-8. PubMed ID: 25800308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sim1 is required for the migration and axonal projections of V3 interneurons in the developing mouse spinal cord.
    Blacklaws J; Deska-Gauthier D; Jones CT; Petracca YL; Liu M; Zhang H; Fawcett JP; Glover JC; Lanuza GM; Zhang Y
    Dev Neurobiol; 2015 Sep; 75(9):1003-17. PubMed ID: 25652362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional subpopulations of V3 interneurons in the mature mouse spinal cord.
    Borowska J; Jones CT; Zhang H; Blacklaws J; Goulding M; Zhang Y
    J Neurosci; 2013 Nov; 33(47):18553-65. PubMed ID: 24259577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury.
    Lin S; Li Y; Lucas-Osma AM; Hari K; Stephens MJ; Singla R; Heckman CJ; Zhang Y; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2019 Apr; 121(4):1352-1367. PubMed ID: 30625014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic brainstem circuits comprised of Chx10-expressing neurons contribute to reticulospinal output in mice.
    Chopek JW; Zhang Y; Brownstone RM
    J Neurophysiol; 2021 Dec; 126(6):1978-1990. PubMed ID: 34669520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice.
    Goltash S; Stevens SJ; Topcu E; Bui TV
    Front Neural Circuits; 2023; 17():1176310. PubMed ID: 37476398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion.
    Ampatzis K; Song J; Ausborn J; El Manira A
    Neuron; 2014 Aug; 83(4):934-43. PubMed ID: 25123308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.
    Ziskind-Conhaim L; Wu L; Wiesner EP
    J Neurophysiol; 2008 Oct; 100(4):2254-64. PubMed ID: 18667543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord.
    Wu L; Sonner PM; Titus DJ; Wiesner EP; Alvarez FJ; Ziskind-Conhaim L
    J Neurosci; 2011 Mar; 31(13):4821-33. PubMed ID: 21451020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord.
    Buchanan JT; Grillner S
    Science; 1987 Apr; 236(4799):312-4. PubMed ID: 3563512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of motoneurons and interneurons in the spinal network for escapes initiated by the mauthner cell in goldfish.
    Fetcho JR; Faber DS
    J Neurosci; 1988 Nov; 8(11):4192-213. PubMed ID: 3183720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.
    McLean DL; Fetcho JR
    J Neurosci; 2009 Oct; 29(43):13566-77. PubMed ID: 19864569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.
    Witts EC; Nascimento F; Miles GB
    J Neurophysiol; 2015 Oct; 114(4):2305-15. PubMed ID: 26311185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.