BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30282062)

  • 1. Prospects of annular differential phase contrast applied for optical sectioning in STEM.
    Lee Z; Kaiser U; Rose H
    Ultramicroscopy; 2019 Jan; 196():58-66. PubMed ID: 30282062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future trends in aberration-corrected electron microscopy.
    Rose HH
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3809-23. PubMed ID: 19687067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberration-corrected STEM/TEM imaging at 15kV.
    Sasaki T; Sawada H; Hosokawa F; Sato Y; Suenaga K
    Ultramicroscopy; 2014 Oct; 145():50-5. PubMed ID: 24842229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choice of operating voltage for a transmission electron microscope.
    Egerton RF
    Ultramicroscopy; 2014 Oct; 145():85-93. PubMed ID: 24679438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberration corrected STEM by means of diffraction gratings.
    Linck M; Ercius PA; Pierce JS; McMorran BJ
    Ultramicroscopy; 2017 Nov; 182():36-43. PubMed ID: 28651199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.
    Sawada H; Tanishiro Y; Ohashi N; Tomita T; Hosokawa F; Kaneyama T; Kondo Y; Takayanagi K
    J Electron Microsc (Tokyo); 2009 Dec; 58(6):357-61. PubMed ID: 19546144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
    Linck M; Hartel P; Uhlemann S; Kahl F; Müller H; Zach J; Haider M; Niestadt M; Bischoff M; Biskupek J; Lee Z; Lehnert T; Börrnert F; Rose H; Kaiser U
    Phys Rev Lett; 2016 Aug; 117(7):076101. PubMed ID: 27563976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects of atomic resolution imaging with an aberration-corrected STEM.
    Ishizuka K
    J Electron Microsc (Tokyo); 2001; 50(4):291-305. PubMed ID: 11592674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun.
    Sasaki T; Sawada H; Hosokawa F; Kohno Y; Tomita T; Kaneyama T; Kondo Y; Kimoto K; Sato Y; Suenaga K
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S7-13. PubMed ID: 20581425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution enhancement at a large convergence angle by a delta corrector with a CFEG in a low-accelerating-voltage STEM.
    Sawada H; Sasaki T; Hosokawa F; Suenaga K
    Micron; 2014 Aug; 63():35-9. PubMed ID: 24618015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of STEM aberration correction on materials science.
    Pennycook SJ
    Ultramicroscopy; 2017 Sep; 180():22-33. PubMed ID: 28438428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution.
    Pennycook TJ; Lupini AR; Yang H; Murfitt MF; Jones L; Nellist PD
    Ultramicroscopy; 2015 Apr; 151():160-167. PubMed ID: 25458189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum-dose phase-contrast tomography by successive numerical optical sectioning employing the aberration-corrected STEM and a pixelated detector.
    Rose H
    Ultramicroscopy; 2022 May; 235():113484. PubMed ID: 35177296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chromatic aberration on atomic-resolved spherical aberration corrected STEM images.
    Kuramochi K; Yamazaki T; Kotaka Y; Ohtsuka M; Hashimoto I; Watanabe K
    Ultramicroscopy; 2009 Dec; 110(1):36-42. PubMed ID: 19818560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated geometric aberration correction for large-angle illumination STEM.
    Ishikawa R; Tanaka R; Morishita S; Kohno Y; Sawada H; Sasaki T; Ichikawa M; Hasegawa M; Shibata N; Ikuhara Y
    Ultramicroscopy; 2021 Mar; 222():113215. PubMed ID: 33548863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reprint of: Automated geometric aberration correction for large-angle illumination STEM.
    Ishikawa R; Tanaka R; Morishita S; Kohno Y; Sawada H; Sasaki T; Ichikawa M; Hasegawa M; Shibata N; Ikuhara Y
    Ultramicroscopy; 2021 Dec; 231():113410. PubMed ID: 34756616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-Resolution STEM Imaging of Graphene at Low Voltage of 30 kV with Resolution Enhancement by Using Large Convergence Angle.
    Sawada H; Sasaki T; Hosokawa F; Suenaga K
    Phys Rev Lett; 2015 Apr; 114(16):166102. PubMed ID: 25955058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.
    Bimurzaev SB; Aldiyarov NU; Yakushev EM
    Microscopy (Oxf); 2017 Oct; 66(5):356-365. PubMed ID: 29016920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope.
    Nellist PD; Cosgriff EC; Behan G; Kirkland AI
    Microsc Microanal; 2008 Feb; 14(1):82-8. PubMed ID: 18096098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
    Dohi H; Kruit P
    Ultramicroscopy; 2018 Jun; 189():1-23. PubMed ID: 29574382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.